Local convergence of primal–dual interior point methods for nonlinear semidefinite optimization using the Monteiro–Tsuchiya family of search directions
{"title":"Local convergence of primal–dual interior point methods for nonlinear semidefinite optimization using the Monteiro–Tsuchiya family of search directions","authors":"Takayuki Okuno","doi":"10.1007/s10589-024-00562-y","DOIUrl":null,"url":null,"abstract":"<p>The recent advance of algorithms for nonlinear semidefinite optimization problems (NSDPs) is remarkable. Yamashita et al. first proposed a primal–dual interior point method (PDIPM) for solving NSDPs using the family of Monteiro–Zhang (MZ) search directions. Since then, various kinds of PDIPMs have been proposed for NSDPs, but, as far as we know, all of them are based on the MZ family. In this paper, we present a PDIPM equipped with the family of Monteiro–Tsuchiya (MT) directions, which were originally devised for solving linear semidefinite optimization problems as were the MZ family. We further prove local superlinear convergence to a Karush–Kuhn–Tucker point of the NSDP in the presence of certain general assumptions on scaling matrices, which are used in producing the MT search directions. Finally, we conduct numerical experiments to compare the efficiency among members of the MT family.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"48 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00562-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The recent advance of algorithms for nonlinear semidefinite optimization problems (NSDPs) is remarkable. Yamashita et al. first proposed a primal–dual interior point method (PDIPM) for solving NSDPs using the family of Monteiro–Zhang (MZ) search directions. Since then, various kinds of PDIPMs have been proposed for NSDPs, but, as far as we know, all of them are based on the MZ family. In this paper, we present a PDIPM equipped with the family of Monteiro–Tsuchiya (MT) directions, which were originally devised for solving linear semidefinite optimization problems as were the MZ family. We further prove local superlinear convergence to a Karush–Kuhn–Tucker point of the NSDP in the presence of certain general assumptions on scaling matrices, which are used in producing the MT search directions. Finally, we conduct numerical experiments to compare the efficiency among members of the MT family.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.