{"title":"Deep learning-based control framework for dynamic contact processes in humanoid grasping","authors":"Shaowen Cheng, Yongbin Jin, Hongtao Wang","doi":"10.3389/fnbot.2024.1349752","DOIUrl":null,"url":null,"abstract":"Humanoid grasping is a critical ability for anthropomorphic hand, and plays a significant role in the development of humanoid robots. In this article, we present a deep learning-based control framework for humanoid grasping, incorporating the dynamic contact process among the anthropomorphic hand, the object, and the environment. This method efficiently eliminates the constraints imposed by inaccessible grasping points on both the contact surface of the object and the table surface. To mimic human-like grasping movements, an underactuated anthropomorphic hand is utilized, which is designed based on human hand data. The utilization of hand gestures, rather than controlling each motor separately, has significantly decreased the control dimensionality. Additionally, a deep learning framework is used to select gestures and grasp actions. Our methodology, proven both in simulation and on real robot, exceeds the performance of static analysis-based methods, as measured by the standard grasp metric <jats:italic>Q</jats:italic><jats:sub>1</jats:sub>. It expands the range of objects the system can handle, effectively grasping thin items such as cards on tables, a task beyond the capabilities of previous methodologies.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1349752","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Humanoid grasping is a critical ability for anthropomorphic hand, and plays a significant role in the development of humanoid robots. In this article, we present a deep learning-based control framework for humanoid grasping, incorporating the dynamic contact process among the anthropomorphic hand, the object, and the environment. This method efficiently eliminates the constraints imposed by inaccessible grasping points on both the contact surface of the object and the table surface. To mimic human-like grasping movements, an underactuated anthropomorphic hand is utilized, which is designed based on human hand data. The utilization of hand gestures, rather than controlling each motor separately, has significantly decreased the control dimensionality. Additionally, a deep learning framework is used to select gestures and grasp actions. Our methodology, proven both in simulation and on real robot, exceeds the performance of static analysis-based methods, as measured by the standard grasp metric Q1. It expands the range of objects the system can handle, effectively grasping thin items such as cards on tables, a task beyond the capabilities of previous methodologies.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.