Efficiently estimating node influence through group sampling over large graphs

Lingling Zhang, Zhiping Shi, Zhiwei Zhang, Ye Yuan, Guoren Wang
{"title":"Efficiently estimating node influence through group sampling over large graphs","authors":"Lingling Zhang, Zhiping Shi, Zhiwei Zhang, Ye Yuan, Guoren Wang","doi":"10.1007/s11280-024-01257-4","DOIUrl":null,"url":null,"abstract":"<p>The huge amount of graph data necessitates sampling methods to support graph-based analysis applications. Node influence is to count the influential nodes with a given node in large graphs that has wide applications including product promotion and information diffusion in social networks. However, existing sampling methods mainly consider node degree to compute the node influence while ignoring the important connections in terms of groups in which nodes participate, resulting in inaccuracy of influence estimations. To this end, this paper proposes group sampling, called GVRW, to count the groups along with node degrees to evaluate node influence in large graphs. Specifically, GVRW changes the way of random walker traversing a large graph from one node to a random neighbor node of the groups to enlarge the sampling space for the sake of characterizing the nodes and groups simultaneously. Furthermore, we carefully design the corresponding estimated method to employ the samples to estimate the specific distributions of groups and node degrees to compute the node influence. Experimental results on real-world graph datasets show that our proposed sampling and estimating methods can accurately obtain the properties and approximate the node influences closer to the real values than existing methods.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01257-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The huge amount of graph data necessitates sampling methods to support graph-based analysis applications. Node influence is to count the influential nodes with a given node in large graphs that has wide applications including product promotion and information diffusion in social networks. However, existing sampling methods mainly consider node degree to compute the node influence while ignoring the important connections in terms of groups in which nodes participate, resulting in inaccuracy of influence estimations. To this end, this paper proposes group sampling, called GVRW, to count the groups along with node degrees to evaluate node influence in large graphs. Specifically, GVRW changes the way of random walker traversing a large graph from one node to a random neighbor node of the groups to enlarge the sampling space for the sake of characterizing the nodes and groups simultaneously. Furthermore, we carefully design the corresponding estimated method to employ the samples to estimate the specific distributions of groups and node degrees to compute the node influence. Experimental results on real-world graph datasets show that our proposed sampling and estimating methods can accurately obtain the properties and approximate the node influences closer to the real values than existing methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对大型图进行分组抽样,高效估算节点影响力
海量的图数据需要采样方法来支持基于图的分析应用。节点影响力是指计算大型图中对给定节点有影响力的节点,它在社交网络的产品推广和信息传播等方面有着广泛的应用。然而,现有的抽样方法主要考虑节点度来计算节点影响力,而忽略了节点参与的群体方面的重要联系,导致影响力估计不准确。为此,本文提出了名为 GVRW 的分组采样法,在计算节点度的同时计算分组,以评估大型图中的节点影响力。具体来说,GVRW 改变了随机漫步者遍历大型图的方式,即从一个节点到群的随机相邻节点,以扩大采样空间,从而同时描述节点和群的特征。此外,我们还精心设计了相应的估计方法,利用样本来估计群组和节点度的具体分布,从而计算节点的影响力。在真实图数据集上的实验结果表明,与现有方法相比,我们提出的采样和估计方法可以准确地获得节点的属性,并近似地计算出更接近真实值的节点影响力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networks A SHAP-based controversy analysis through communities on Twitter pFind: Privacy-preserving lost object finding in vehicular crowdsensing Use of prompt-based learning for code-mixed and code-switched text classification Drug traceability system based on semantic blockchain and on a reputation method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1