{"title":"A phenomenological figure of merit for photovoltaic materials","authors":"Andrea Crovetto","doi":"10.1088/2515-7655/ad2499","DOIUrl":null,"url":null,"abstract":"I derive a figure of merit (FOM) <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> to estimate the maximum efficiency attainable by a generic non-ideal photovoltaic (PV) absorber in a planar single-junction solar cell. This efficiency limit complements the more idealized limits derived from fundamental physics, such as the Shockley–Queisser (SQ) limit and its subsequent generalizations. Specifically, the present FOM approach yields stricter efficiency limits applicable to realistic PV absorbers with various imperfections, including finite carrier mobilities and doping densities. <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is a function of eight properties of the absorber that are both measurable by experiment and computable by electronic structure methods. They are: band gap, non-radiative carrier lifetime, carrier mobility, doping density, static dielectric constant, effective mass, and two parameters describing the spectral average and dispersion of the light absorption coefficient. <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> has high predictive power (absolute efficiency error less than <inline-formula>\n<tex-math><?CDATA $\\pm 1.1\\%$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>±</mml:mo><mml:mn>1.1</mml:mn><mml:mi mathvariant=\"normal\">%</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) and wide applicability range. The SQ limit and its generalizations are reproduced by <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Simpler FOMs proposed by others are also included as special cases of <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"61 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad2499","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
I derive a figure of merit (FOM) ΓPV to estimate the maximum efficiency attainable by a generic non-ideal photovoltaic (PV) absorber in a planar single-junction solar cell. This efficiency limit complements the more idealized limits derived from fundamental physics, such as the Shockley–Queisser (SQ) limit and its subsequent generalizations. Specifically, the present FOM approach yields stricter efficiency limits applicable to realistic PV absorbers with various imperfections, including finite carrier mobilities and doping densities. ΓPV is a function of eight properties of the absorber that are both measurable by experiment and computable by electronic structure methods. They are: band gap, non-radiative carrier lifetime, carrier mobility, doping density, static dielectric constant, effective mass, and two parameters describing the spectral average and dispersion of the light absorption coefficient. ΓPV has high predictive power (absolute efficiency error less than ±1.1%) and wide applicability range. The SQ limit and its generalizations are reproduced by ΓPV. Simpler FOMs proposed by others are also included as special cases of ΓPV.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.