A phenomenological figure of merit for photovoltaic materials

IF 7 3区 材料科学 Q1 ENERGY & FUELS Journal of Physics-Energy Pub Date : 2024-02-15 DOI:10.1088/2515-7655/ad2499
Andrea Crovetto
{"title":"A phenomenological figure of merit for photovoltaic materials","authors":"Andrea Crovetto","doi":"10.1088/2515-7655/ad2499","DOIUrl":null,"url":null,"abstract":"I derive a figure of merit (FOM) <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> to estimate the maximum efficiency attainable by a generic non-ideal photovoltaic (PV) absorber in a planar single-junction solar cell. This efficiency limit complements the more idealized limits derived from fundamental physics, such as the Shockley–Queisser (SQ) limit and its subsequent generalizations. Specifically, the present FOM approach yields stricter efficiency limits applicable to realistic PV absorbers with various imperfections, including finite carrier mobilities and doping densities. <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is a function of eight properties of the absorber that are both measurable by experiment and computable by electronic structure methods. They are: band gap, non-radiative carrier lifetime, carrier mobility, doping density, static dielectric constant, effective mass, and two parameters describing the spectral average and dispersion of the light absorption coefficient. <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> has high predictive power (absolute efficiency error less than <inline-formula>\n<tex-math><?CDATA $\\pm 1.1\\%$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>±</mml:mo><mml:mn>1.1</mml:mn><mml:mi mathvariant=\"normal\">%</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) and wide applicability range. The SQ limit and its generalizations are reproduced by <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Simpler FOMs proposed by others are also included as special cases of <inline-formula>\n<tex-math><?CDATA $\\Gamma_{\\mathrm{PV}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">P</mml:mi><mml:mi mathvariant=\"normal\">V</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jpenergyad2499ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"61 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad2499","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

I derive a figure of merit (FOM) ΓPV to estimate the maximum efficiency attainable by a generic non-ideal photovoltaic (PV) absorber in a planar single-junction solar cell. This efficiency limit complements the more idealized limits derived from fundamental physics, such as the Shockley–Queisser (SQ) limit and its subsequent generalizations. Specifically, the present FOM approach yields stricter efficiency limits applicable to realistic PV absorbers with various imperfections, including finite carrier mobilities and doping densities. ΓPV is a function of eight properties of the absorber that are both measurable by experiment and computable by electronic structure methods. They are: band gap, non-radiative carrier lifetime, carrier mobility, doping density, static dielectric constant, effective mass, and two parameters describing the spectral average and dispersion of the light absorption coefficient. ΓPV has high predictive power (absolute efficiency error less than ±1.1% ) and wide applicability range. The SQ limit and its generalizations are reproduced by ΓPV . Simpler FOMs proposed by others are also included as special cases of ΓPV .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏材料的现象学功勋值
我推导出一个优点系数(FOM)ΓPV,以估算平面单结太阳能电池中一般非理想光电(PV)吸收器可达到的最大效率。这一效率极限补充了从基础物理学中推导出的更为理想化的极限,例如肖克利-奎塞尔(SQ)极限及其后续的概括。具体地说,目前的 FOM 方法产生了更严格的效率极限,适用于具有各种缺陷(包括有限载流子迁移率和掺杂密度)的现实光伏吸收器。ΓPV 是吸收体八个特性的函数,这些特性既可以通过实验测量,也可以通过电子结构方法计算。它们是:带隙、非辐射载流子寿命、载流子迁移率、掺杂密度、静态介电常数、有效质量,以及描述光吸收系数的光谱平均值和色散的两个参数。ΓPV 预测能力强(绝对效率误差小于 ±1.1%),适用范围广。ΓPV 重现了 SQ 极限及其概括。其他人提出的更简单的 FOM 也作为 ΓPV 的特例包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
期刊最新文献
Hybrid energy storage systems for fast-developing renewable energy plants Critical review on the controllable growth and post-annealing on the heterojunction of the kesterite solar cells Synthesis and growth of solution-processed chiral perovskites Introduction of novel method of cyclic self-heating for the experimental quantification of the efficiency of caloric materials shown for LaFe11,4Mn0,35Si1,26Hx Effect of preparation routes on the performance of a multi-component AB2-type hydrogen storage alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1