{"title":"The displacement mechanism of the cracked rock – a seismic design and prediction study using XFEM and ANNs","authors":"Omer Mughieda, Lijie Guo, Yunchao Tang, Nader M. Okasha, Sayed Javid Azimi, Abdoullah Namdar, Falak Azhar","doi":"10.1186/s40323-024-00261-7","DOIUrl":null,"url":null,"abstract":"Materials with sufficient strength and stiffness can transfer nonlinear design loads without damage. The present study compares crack propagation speed and shape in rock-like material and sandstone when subjected to seismic acceleration. The nonlinear extended finite element method (NXFEM) has been used in numerical simulation. It assumes the model has a pre-existing crack at 0° from the horizontal. The mechanical properties of the model, crack propagation shape, and crack speed were selected as the main parameters. The nonlinear stress and strain along the crack have been compared in two simulated models. NXFEM and Artificial Neural Networks (ANNs) were used to predict the displacement. The simulation results illustrate that the materials’ crack propagation mechanism and mechanical properties control the stress, strain, and displacement at the selected points in the model. In addition, crack propagation in materials is related to elastic-plastic stresses and strains along the crack path. The speed and shape of the crack are associated with the mechanical properties of the materials. The prediction of crack paths helps to understand failure patterns. Comparison of the seismic response of the rock-like material with sandstone helps to assess the stress, strain, and displacement levels during cracking. This study’s findings agree with the literature report and field observations.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-024-00261-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Materials with sufficient strength and stiffness can transfer nonlinear design loads without damage. The present study compares crack propagation speed and shape in rock-like material and sandstone when subjected to seismic acceleration. The nonlinear extended finite element method (NXFEM) has been used in numerical simulation. It assumes the model has a pre-existing crack at 0° from the horizontal. The mechanical properties of the model, crack propagation shape, and crack speed were selected as the main parameters. The nonlinear stress and strain along the crack have been compared in two simulated models. NXFEM and Artificial Neural Networks (ANNs) were used to predict the displacement. The simulation results illustrate that the materials’ crack propagation mechanism and mechanical properties control the stress, strain, and displacement at the selected points in the model. In addition, crack propagation in materials is related to elastic-plastic stresses and strains along the crack path. The speed and shape of the crack are associated with the mechanical properties of the materials. The prediction of crack paths helps to understand failure patterns. Comparison of the seismic response of the rock-like material with sandstone helps to assess the stress, strain, and displacement levels during cracking. This study’s findings agree with the literature report and field observations.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.