Constitutive Description of Flow Curve for Duplex Titanium Alloy for Hot Forming under Elevated Temperature

IF 1.6 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Isij International Pub Date : 2024-02-29 DOI:10.2355/isijinternational.isijint-2024-014
Yuki Shimomura, Hyung-Won Park, Hyeon-Woo Park, Yuji Sato, Jun Yanagimoto
{"title":"Constitutive Description of Flow Curve for Duplex Titanium Alloy for Hot Forming under Elevated Temperature","authors":"Yuki Shimomura, Hyung-Won Park, Hyeon-Woo Park, Yuji Sato, Jun Yanagimoto","doi":"10.2355/isijinternational.isijint-2024-014","DOIUrl":null,"url":null,"abstract":"</p><p>A novel integrated constitutive equation of the flow curve for Ti–6Al–4V alloys is proposed by incorporating the effects of phase fraction in the hot-forging temperature range. The flow curve was obtained using hot-compression tests in the temperature range of 750–1050 °C and strain rate range of 1–25 s<sup>-1</sup>. The effects of friction and deformation heat generated during compression were corrected using the inverse analysis method to identify the ideal uniaxial flow curve. The obtained stress parameters were satisfactorily regressed using the rule of mixtures on the α and β phases considering changes in the phase fraction. The integrated flow curve equation incorporating the rule of mixtures of the two phases effectively expressed the flow curve throughout the investigated temperature range. The internal microstructural observation showed that the continuous dynamic recrystallization of the α phase is dominant in the α+β two-phase region, while the deformation of the β phase becomes dominant just below the β transus. The constitutive equation presented here is in good agreement with the temperature dependence of the microstructure.</p>\n<p></p>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2024-014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A novel integrated constitutive equation of the flow curve for Ti–6Al–4V alloys is proposed by incorporating the effects of phase fraction in the hot-forging temperature range. The flow curve was obtained using hot-compression tests in the temperature range of 750–1050 °C and strain rate range of 1–25 s-1. The effects of friction and deformation heat generated during compression were corrected using the inverse analysis method to identify the ideal uniaxial flow curve. The obtained stress parameters were satisfactorily regressed using the rule of mixtures on the α and β phases considering changes in the phase fraction. The integrated flow curve equation incorporating the rule of mixtures of the two phases effectively expressed the flow curve throughout the investigated temperature range. The internal microstructural observation showed that the continuous dynamic recrystallization of the α phase is dominant in the α+β two-phase region, while the deformation of the β phase becomes dominant just below the β transus. The constitutive equation presented here is in good agreement with the temperature dependence of the microstructure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温热成形双相钛合金流动曲线的构成描述
通过考虑热锻温度范围内相分数的影响,提出了一种新的 Ti-6Al-4V 合金流动曲线综合构成方程。流动曲线是通过温度范围为 750-1050 °C、应变速率范围为 1-25 s-1 的热压试验获得的。利用反分析方法修正了压缩过程中产生的摩擦和变形热的影响,从而确定了理想的单轴流动曲线。考虑到相分数的变化,利用混合物法则对 α 和 β 相进行了回归,得到了令人满意的应力参数。包含两相混合物规则的综合流动曲线方程有效地表达了整个研究温度范围内的流动曲线。内部微观结构观察表明,α相的连续动态再结晶在α+β两相区域占主导地位,而β相的变形则在β横断面以下占主导地位。这里提出的构成方程与微观结构的温度依赖性非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Isij International
Isij International 工程技术-冶金工程
CiteScore
3.40
自引率
16.70%
发文量
268
审稿时长
2.6 months
期刊介绍: The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
期刊最新文献
Ductility loss of a metastable austenitic stainless steel and its TIG weldment due to hydrogen embrittlement at low temperatures considering the effect of pre-strain at 4K Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force Ductile Fracture Prediction During Metal Forming Using an Ellipsoidal Void Model and Some Other Models Atmospheric Corrosion Behavior of Ni-Advanced Weathering Steels in High-Chloride Environment: Effect of Ni on Corrosion Morphology Arc-plasma-assisted laser-induced breakdown spectroscopy (AP-LIBS): A Study on Signal Enhancement and Spatiotemporal Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1