Evolution of modal parameters of composite wind turbine blades under short- and long-term forced vibration tests

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-02-29 DOI:10.1007/s13349-024-00773-1
José M. Gutiérrez, Rodrigo Astroza, Francisco Jaramillo, Marcos Orchard, Marcelo Guarini
{"title":"Evolution of modal parameters of composite wind turbine blades under short- and long-term forced vibration tests","authors":"José M. Gutiérrez, Rodrigo Astroza, Francisco Jaramillo, Marcos Orchard, Marcelo Guarini","doi":"10.1007/s13349-024-00773-1","DOIUrl":null,"url":null,"abstract":"<p>Modal properties of dynamically tested wind turbine blades (WTBs) of a utility-scale wind turbine are identified. A comprehensive experimental program including free vibration and short- and long-term forced vibrations representing resonance and simplified fatigue conditions was carried out to investigate vibration-based features for damage diagnosis and prognosis. A set of 12 undamaged WTBs were tested to study the variability of the identified modal parameters. Results indicate that the variability of the natural frequencies was rather low, while the obtained damping ratios exhibited significant differences. Forced vibration tests were then conducted. To reach the failure of the blades, approximately 1.9 × 10<sup>4</sup> and 4.2 × 10<sup>7</sup> cycles were induced in the short- and long-term tests, respectively. Modal properties identified during testing protocols suggest that natural frequencies correlate well with damage. A linear finite element model was also developed, and its modal properties are compared to the identified modal parameters of the undamaged blades.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"7 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00773-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Modal properties of dynamically tested wind turbine blades (WTBs) of a utility-scale wind turbine are identified. A comprehensive experimental program including free vibration and short- and long-term forced vibrations representing resonance and simplified fatigue conditions was carried out to investigate vibration-based features for damage diagnosis and prognosis. A set of 12 undamaged WTBs were tested to study the variability of the identified modal parameters. Results indicate that the variability of the natural frequencies was rather low, while the obtained damping ratios exhibited significant differences. Forced vibration tests were then conducted. To reach the failure of the blades, approximately 1.9 × 104 and 4.2 × 107 cycles were induced in the short- and long-term tests, respectively. Modal properties identified during testing protocols suggest that natural frequencies correlate well with damage. A linear finite element model was also developed, and its modal properties are compared to the identified modal parameters of the undamaged blades.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合材料风力涡轮机叶片在短期和长期强迫振动试验下的模态参数演变
确定了公用事业级风力涡轮机动态测试风力涡轮机叶片(WTB)的模态特性。为了研究用于损伤诊断和预报的基于振动的特征,进行了一项综合实验计划,包括自由振动和代表共振和简化疲劳条件的短期和长期强迫振动。对一组 12 个未损坏的风电机组进行了测试,以研究已识别模态参数的可变性。结果表明,固有频率的可变性相当低,而获得的阻尼比则表现出显著差异。随后进行了强制振动测试。为了使叶片失效,在短期和长期试验中分别诱导了约 1.9 × 104 和 4.2 × 107 个周期。在测试过程中确定的模态特性表明,自然频率与损伤有很好的相关性。此外,还开发了线性有限元模型,并将其模态特性与未损坏叶片的已识别模态参数进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1