Learning Cross-Modality Interaction for Robust Depth Perception of Autonomous Driving

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Intelligent Systems and Technology Pub Date : 2024-03-01 DOI:10.1145/3650039
Yunji Liang, Nengzhen Chen, Zhiwen Yu, Lei Tang, Hongkai Yu, Bin Guo, Daniel Dajun Zeng
{"title":"Learning Cross-Modality Interaction for Robust Depth Perception of Autonomous Driving","authors":"Yunji Liang, Nengzhen Chen, Zhiwen Yu, Lei Tang, Hongkai Yu, Bin Guo, Daniel Dajun Zeng","doi":"10.1145/3650039","DOIUrl":null,"url":null,"abstract":"<p>As one of the fundamental tasks of autonomous driving, depth perception aims to perceive physical objects in three dimensions and to judge their distances away from the ego vehicle. Although great efforts have been made for depth perception, LiDAR-based and camera-based solutions have limitations with low accuracy and poor robustness for noise input. With the integration of monocular cameras and LiDAR sensors in autonomous vehicles, in this paper, we introduce a two-stream architecture to learn the modality interaction representation under the guidance of an image reconstruction task to compensate for the deficiencies of each modality in a parallel manner. Specifically, in the two-stream architecture, the multi-scale cross-modality interactions are preserved via a cascading interaction network under the guidance of the reconstruction task. Next, the shared representation of modality interaction is integrated to infer the dense depth map due to the complementary and the heterogeneity of the two modalities. We evaluated the proposed solution on the KITTI dataset and CALAR synthetic dataset. Our experimental results show that learning the coupled interaction of modalities under the guidance of an auxiliary task can lead to significant performance improvements. Furthermore, our approach is competitive against the state-of-the-art models and robust against the noisy input. The source code is available at <i>https://github.com/tonyFengye/Code/tree/master\n</i>.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650039","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the fundamental tasks of autonomous driving, depth perception aims to perceive physical objects in three dimensions and to judge their distances away from the ego vehicle. Although great efforts have been made for depth perception, LiDAR-based and camera-based solutions have limitations with low accuracy and poor robustness for noise input. With the integration of monocular cameras and LiDAR sensors in autonomous vehicles, in this paper, we introduce a two-stream architecture to learn the modality interaction representation under the guidance of an image reconstruction task to compensate for the deficiencies of each modality in a parallel manner. Specifically, in the two-stream architecture, the multi-scale cross-modality interactions are preserved via a cascading interaction network under the guidance of the reconstruction task. Next, the shared representation of modality interaction is integrated to infer the dense depth map due to the complementary and the heterogeneity of the two modalities. We evaluated the proposed solution on the KITTI dataset and CALAR synthetic dataset. Our experimental results show that learning the coupled interaction of modalities under the guidance of an auxiliary task can lead to significant performance improvements. Furthermore, our approach is competitive against the state-of-the-art models and robust against the noisy input. The source code is available at https://github.com/tonyFengye/Code/tree/master .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习跨模态交互,实现自主驾驶的鲁棒深度感知
作为自动驾驶的基本任务之一,深度感知旨在感知三维空间中的物理对象,并判断它们与自我车辆的距离。虽然人们在深度感知方面做出了巨大努力,但基于激光雷达和摄像头的解决方案存在精度低、对噪声输入的鲁棒性差等局限性。随着单目摄像头和激光雷达传感器在自动驾驶汽车中的集成,我们在本文中引入了一种双流架构,在图像重建任务的指导下学习模态交互表示,以并行的方式弥补每种模态的不足。具体来说,在双流架构中,多尺度跨模态交互在重建任务的指导下通过级联交互网络得以保留。接下来,由于两种模式的互补性和异质性,模式交互的共享表示被整合到一起,以推断出密集的深度图。我们在 KITTI 数据集和 CALAR 合成数据集上评估了所提出的解决方案。实验结果表明,在辅助任务的指导下学习模态之间的耦合交互可以显著提高性能。此外,与最先进的模型相比,我们的方法具有很强的竞争力,而且对噪声输入也很稳健。源代码见 https://github.com/tonyFengye/Code/tree/master。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
期刊最新文献
A Survey of Trustworthy Federated Learning: Issues, Solutions, and Challenges DeepSneak: User GPS Trajectory Reconstruction from Federated Route Recommendation Models WC-SBERT: Zero-Shot Topic Classification Using SBERT and Light Self-Training on Wikipedia Categories Self-supervised Text Style Transfer using Cycle-Consistent Adversarial Networks Federated Learning Survey: A Multi-Level Taxonomy of Aggregation Techniques, Experimental Insights, and Future Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1