TMD material investigation for a low hysteresis vdW NCFET logic transistor

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Semiconductor Science and Technology Pub Date : 2024-02-28 DOI:10.1088/1361-6641/ad2b09
I Blessing Meshach Dason, N Kasthuri, D Nirmal
{"title":"TMD material investigation for a low hysteresis vdW NCFET logic transistor","authors":"I Blessing Meshach Dason, N Kasthuri, D Nirmal","doi":"10.1088/1361-6641/ad2b09","DOIUrl":null,"url":null,"abstract":"Boltzmann limit is inevitable in conventional MOSFETs, which prevent them to be used for low-power applications. Research in device physics can address this problem by selection of proper materials satisfying our requirements. Recently, 2D transition metal di-chalcogenide (TMD) materials are gaining interest because they help alleviate short-channel effects and DIBL problems. The TMD materials are composed by covalently bonded weak van der Waals (vdW) interaction and can be realized as hetero structures with 2D ferro-electric material CuInP<sub>2</sub>S<sub>6</sub> at the gate stack. This paper demonstrates a vdW negative capacitance field effect transistor (NCFET) structure in TCAD and the design was validated for voltage-current Characteristics. Parametric analysis shows MoS<sub>2</sub> with phenomenal on/off ratio, narrow hysteresis than the counterparts. Simulation shows that MoS<sub>2</sub> vdW NCFET has a high transconductance of 2.36 <italic toggle=\"yes\">µ</italic>S <italic toggle=\"yes\">µ</italic>m<sup>−1</sup>. A steep slope of 28.54 mV dec<sup>−1</sup> is seen in MoS<sub>2</sub> vdW NCFET which promises the performance of logic applications at a reduced supply voltage.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"124 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad2b09","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Boltzmann limit is inevitable in conventional MOSFETs, which prevent them to be used for low-power applications. Research in device physics can address this problem by selection of proper materials satisfying our requirements. Recently, 2D transition metal di-chalcogenide (TMD) materials are gaining interest because they help alleviate short-channel effects and DIBL problems. The TMD materials are composed by covalently bonded weak van der Waals (vdW) interaction and can be realized as hetero structures with 2D ferro-electric material CuInP2S6 at the gate stack. This paper demonstrates a vdW negative capacitance field effect transistor (NCFET) structure in TCAD and the design was validated for voltage-current Characteristics. Parametric analysis shows MoS2 with phenomenal on/off ratio, narrow hysteresis than the counterparts. Simulation shows that MoS2 vdW NCFET has a high transconductance of 2.36 µS µm−1. A steep slope of 28.54 mV dec−1 is seen in MoS2 vdW NCFET which promises the performance of logic applications at a reduced supply voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低磁滞 vdW NCFET 逻辑晶体管的 TMD 材料研究
传统 MOSFET 不可避免地存在玻尔兹曼极限,这使其无法用于低功耗应用。器件物理学研究可以通过选择满足我们要求的适当材料来解决这一问题。最近,二维过渡金属二掺杂镓(TMD)材料正受到越来越多的关注,因为它们有助于缓解短沟道效应和 DIBL 问题。TMD 材料由共价键结合的弱范德华(vdW)相互作用组成,可以与二维铁电材料 CuInP2S6 在栅堆上实现异质结构。本文在 TCAD 中演示了 vdW 负电容场效应晶体管(NCFET)结构,并对设计进行了电压-电流特性验证。参数分析表明,与同类产品相比,MoS2 具有惊人的导通/关断比和较窄的滞后。仿真显示,MoS2 vdW NCFET 的跨导率高达 2.36 µS µm-1。MoS2 vdW NCFET 具有 28.54 mV dec-1 的陡峭斜率,有望在降低电源电压的情况下实现逻辑应用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
期刊最新文献
Effect of atomic layer deposition process parameters on TiN electrode for Hf0.5Zr0.5O2 ferroelectric capacitor The ab initio study of n-type nitrogen and gallium co-doped diamond Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD Sub-bandgap excited photoluminescence probing of deep defect complexes in GaN doped by Si, Ge and C impurities The effect of temperature on the electrical characteristics of zigzag and armchair black phosphorus based 2D MOSFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1