Gang Jian, Shangtao Zhu, Xiao Yuan, Shengqiao Fu, Ning Yang, Chao Yan, Xu Wang, Ching-Ping Wong
{"title":"Biodegradable triboelectric nanogenerator as a implantable power source for embedded medicine devices","authors":"Gang Jian, Shangtao Zhu, Xiao Yuan, Shengqiao Fu, Ning Yang, Chao Yan, Xu Wang, Ching-Ping Wong","doi":"10.1038/s41427-023-00528-2","DOIUrl":null,"url":null,"abstract":"Implantable medical devices have played an important role in human medicine in recent decades. However, traditional implanted devices require battery replacement and a second surgery for device removal, which can cause pain to the patient. This work presents a biodegradable triboelectric nanogenerator (BI-TENG) made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best generator output performance by providing voltages that reached 368 V. The biocompatibility of the friction layer and the device was verified via a blood test. After implantation in mice, the BI-TENG exhibited an open-circuit voltage of 0.176 V and a short-circuit current of 192 nA as generated from body movement. The BI-TENG was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin (DOX) from red blood cells in targeted drug delivery systems. After stopping the electric field, the release of DOX normalized, facilitating the precise killing of cancer cells. Our work demonstrates the broad potential of BI-TENGs in the field of cancer treatment. A biodegradable triboelectric nanogenerator made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best output performance. The nanogenerator was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin from red blood cells in targeted drug delivery systems. The release of doxorubicin normalized, facilitating the precise killing of cancer cells, demonstrating the broad potential in the field of cancer treatments. Implantable electronic devices are vital in contemporary medicine, but often necessitate batteries or surgical removal, which can be painful and expensive. There’s a need for devices that can function within the body and then harmlessly dissolve. This research, led by Gang Jian, investigates a new kind of biodegradable triboelectric nanogenerator for cancer treatment. The scientists created a TENG using polylactic acid and reed membrane, which are materials that can safely degrade in the human body. The results demonstrated that the TENG-driven drug delivery system effectively eradicated tumor cells. The researchers conclude that the biodegradable TENG has potential for wider applications in cancer treatment. This progress could lead to less invasive and more targeted cancer therapies. Future implications include the creation of self-powered medical devices that safely dissolve in the body, reducing the need for extra surgeries. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-11"},"PeriodicalIF":8.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00528-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00528-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implantable medical devices have played an important role in human medicine in recent decades. However, traditional implanted devices require battery replacement and a second surgery for device removal, which can cause pain to the patient. This work presents a biodegradable triboelectric nanogenerator (BI-TENG) made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best generator output performance by providing voltages that reached 368 V. The biocompatibility of the friction layer and the device was verified via a blood test. After implantation in mice, the BI-TENG exhibited an open-circuit voltage of 0.176 V and a short-circuit current of 192 nA as generated from body movement. The BI-TENG was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin (DOX) from red blood cells in targeted drug delivery systems. After stopping the electric field, the release of DOX normalized, facilitating the precise killing of cancer cells. Our work demonstrates the broad potential of BI-TENGs in the field of cancer treatment. A biodegradable triboelectric nanogenerator made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best output performance. The nanogenerator was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin from red blood cells in targeted drug delivery systems. The release of doxorubicin normalized, facilitating the precise killing of cancer cells, demonstrating the broad potential in the field of cancer treatments. Implantable electronic devices are vital in contemporary medicine, but often necessitate batteries or surgical removal, which can be painful and expensive. There’s a need for devices that can function within the body and then harmlessly dissolve. This research, led by Gang Jian, investigates a new kind of biodegradable triboelectric nanogenerator for cancer treatment. The scientists created a TENG using polylactic acid and reed membrane, which are materials that can safely degrade in the human body. The results demonstrated that the TENG-driven drug delivery system effectively eradicated tumor cells. The researchers conclude that the biodegradable TENG has potential for wider applications in cancer treatment. This progress could lead to less invasive and more targeted cancer therapies. Future implications include the creation of self-powered medical devices that safely dissolve in the body, reducing the need for extra surgeries. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.