{"title":"Process failure mode and effects analysis for external beam radiotherapy: Introducing a literature-based template and a novel action priority","authors":"","doi":"10.1016/j.zemedi.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The first aim of the study was to create a general template for analyzing potential failures in external beam radiotherapy, EBRT, using the process failure mode and effects analysis (PFMEA). The second aim was to modify the action priority (AP), a novel prioritization method originally introduced by the Automotive Industry Action Group (AIAG), to work with different severity, occurrence, and detection rating systems used in radiation oncology.</p></div><div><h3>Methods and materials</h3><p>The AIAG PFMEA approach was employed in combination with an extensive literature survey to develop the EBRT-PFMEA template. Subsets of high-risk failure modes found through the literature survey were added to the template where applicable. Our modified AP for radiation oncology (RO AP) was defined using a weighted sum of severity, occurrence, and detectability. Then, Monte Carlo simulations were conducted to compare the original AIAG AP, the RO AP, and the risk priority number (RPN). The results of the simulations were used to determine the number of additional corrective actions per failure mode and to parametrize the RO AP to our department’s rating system.</p></div><div><h3>Results</h3><p>An EBRT-PFMEA template comprising 75 high-risk failure modes could be compiled. The AIAG AP required 1.7 additional corrective actions per failure mode, while the RO AP ranged from 1.3 to 3.5, and the RPN required 3.6. The RO AP could be parametrized so that it suited our rating system and evaluated severity, occurrence, and detection ratings equally to the AIAG AP.</p></div><div><h3>Conclusions</h3><p>An adjustable EBRT-PFMEA template is provided which can be used as a practical starting point for creating institution-specific templates. Moreover, the RO AP introduces transparent action levels that can be adapted to any rating system.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 3","pages":"Pages 358-370"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388924000254/pdfft?md5=d120d40663aca813c9baaed6b47b4dc7&pid=1-s2.0-S0939388924000254-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388924000254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The first aim of the study was to create a general template for analyzing potential failures in external beam radiotherapy, EBRT, using the process failure mode and effects analysis (PFMEA). The second aim was to modify the action priority (AP), a novel prioritization method originally introduced by the Automotive Industry Action Group (AIAG), to work with different severity, occurrence, and detection rating systems used in radiation oncology.
Methods and materials
The AIAG PFMEA approach was employed in combination with an extensive literature survey to develop the EBRT-PFMEA template. Subsets of high-risk failure modes found through the literature survey were added to the template where applicable. Our modified AP for radiation oncology (RO AP) was defined using a weighted sum of severity, occurrence, and detectability. Then, Monte Carlo simulations were conducted to compare the original AIAG AP, the RO AP, and the risk priority number (RPN). The results of the simulations were used to determine the number of additional corrective actions per failure mode and to parametrize the RO AP to our department’s rating system.
Results
An EBRT-PFMEA template comprising 75 high-risk failure modes could be compiled. The AIAG AP required 1.7 additional corrective actions per failure mode, while the RO AP ranged from 1.3 to 3.5, and the RPN required 3.6. The RO AP could be parametrized so that it suited our rating system and evaluated severity, occurrence, and detection ratings equally to the AIAG AP.
Conclusions
An adjustable EBRT-PFMEA template is provided which can be used as a practical starting point for creating institution-specific templates. Moreover, the RO AP introduces transparent action levels that can be adapted to any rating system.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.