Advances in mass spectrometry-enabled at single-cell resolution

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-03-02 DOI:10.1016/j.copbio.2024.103096
Rashmi Kumar , Kevin J Zemaitis, James M Fulcher , Ljiljana Paša-Tolić
{"title":"Advances in mass spectrometry-enabled at single-cell resolution","authors":"Rashmi Kumar ,&nbsp;Kevin J Zemaitis,&nbsp;James M Fulcher ,&nbsp;Ljiljana Paša-Tolić","doi":"10.1016/j.copbio.2024.103096","DOIUrl":null,"url":null,"abstract":"<div><p>Biological organisms are multifaceted, intricate systems where slight perturbations can result in extensive changes in gene expression, protein abundance and/or activity, and metabolic flux. These changes occur at different timescales, spatially across cells of heterogeneous origins, and within single-cells. Hence, multimodal measurements at the smallest biological scales are necessary to capture dynamic changes in heterogeneous biological systems. Of the analytical techniques used to measure biomolecules, mass spectrometry (MS) has proven to be a powerful option due to its sensitivity, robustness, and flexibility with regard to the breadth of biomolecules that can be analyzed. Recently, many studies have coupled MS to other analytical techniques with the goal of measuring multiple modalities from the same single-cell. It is with these concepts in mind that we focus this review on MS-enabled multiomic measurements at single-cell or near-single- cell resolution.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103096"},"PeriodicalIF":7.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000326","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Biological organisms are multifaceted, intricate systems where slight perturbations can result in extensive changes in gene expression, protein abundance and/or activity, and metabolic flux. These changes occur at different timescales, spatially across cells of heterogeneous origins, and within single-cells. Hence, multimodal measurements at the smallest biological scales are necessary to capture dynamic changes in heterogeneous biological systems. Of the analytical techniques used to measure biomolecules, mass spectrometry (MS) has proven to be a powerful option due to its sensitivity, robustness, and flexibility with regard to the breadth of biomolecules that can be analyzed. Recently, many studies have coupled MS to other analytical techniques with the goal of measuring multiple modalities from the same single-cell. It is with these concepts in mind that we focus this review on MS-enabled multiomic measurements at single-cell or near-single- cell resolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞分辨率质谱分析技术的进步
生物有机体是一个多方面的复杂系统,轻微的扰动会导致基因表达、蛋白质丰度和/或活性以及代谢通量发生巨大变化。这些变化发生在不同的时间尺度、不同来源的细胞之间以及单细胞内部。因此,要捕捉异质生物系统的动态变化,就必须在最小的生物尺度上进行多模态测量。在用于测量生物大分子的分析技术中,质谱法(MS)因其灵敏度、稳健性和灵活性,已被证明是一种强大的选择,可分析的生物大分子范围很广。最近,许多研究将质谱与其他分析技术相结合,目的是测量同一单细胞的多种模式。正是基于这些理念,我们将本综述的重点放在单细胞或接近单细胞分辨率的 MS 多组学测量上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants Review: can bioelectrochemical sensors be used to monitor soil microbiome activity and fertility? Engineering T-cell receptor–like antibodies for biologics and cell therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1