JAGS model specification for spatiotemporal epidemiological modelling

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2024-02-28 DOI:10.1016/j.sste.2024.100645
Dinah Jane Lope, Haydar Demirhan
{"title":"JAGS model specification for spatiotemporal epidemiological modelling","authors":"Dinah Jane Lope,&nbsp;Haydar Demirhan","doi":"10.1016/j.sste.2024.100645","DOIUrl":null,"url":null,"abstract":"<div><p>Bayesian inference in modelling infectious diseases using Bayesian inference using Gibbs Sampling (<span>BUGS</span>) is notable in the last two decades in parallel with the advancements in computing and model development. The ability of <span>BUGS</span> to easily implement the Markov chain Monte Carlo (MCMC) method brought Bayesian analysis to the mainstream of infectious disease modelling. However, with the existing software that runs MCMC to make Bayesian inferences, it is challenging, especially in terms of computational complexity, when infectious disease models become more complex with spatial and temporal components, in addition to the increasing number of parameters and large datasets. This study investigates two alternative subscripting strategies for creating models in Just Another Gibbs Sampler (<span>JAGS</span>) environment and their performance in terms of run times. Our results are useful for practitioners to ensure the efficiency and timely implementation of Bayesian spatiotemporal infectious disease modelling.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"49 ","pages":"Article 100645"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000121/pdfft?md5=377cf61a1a26199f88493cbb44914a46&pid=1-s2.0-S1877584524000121-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian inference in modelling infectious diseases using Bayesian inference using Gibbs Sampling (BUGS) is notable in the last two decades in parallel with the advancements in computing and model development. The ability of BUGS to easily implement the Markov chain Monte Carlo (MCMC) method brought Bayesian analysis to the mainstream of infectious disease modelling. However, with the existing software that runs MCMC to make Bayesian inferences, it is challenging, especially in terms of computational complexity, when infectious disease models become more complex with spatial and temporal components, in addition to the increasing number of parameters and large datasets. This study investigates two alternative subscripting strategies for creating models in Just Another Gibbs Sampler (JAGS) environment and their performance in terms of run times. Our results are useful for practitioners to ensure the efficiency and timely implementation of Bayesian spatiotemporal infectious disease modelling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于时空流行病学建模的 JAGS 模型规范
在过去的二十年里,随着计算和模型开发的进步,使用吉布斯采样贝叶斯推断法(BUGS)建立传染病模型的贝叶斯推断法引人注目。BUGS 能够轻松实现马尔可夫链蒙特卡罗(MCMC)方法,这使贝叶斯分析成为传染病建模的主流。然而,利用现有的运行 MCMC 的软件进行贝叶斯推断,当传染病模型变得越来越复杂时,除了参数数量和大型数据集不断增加外,还包含空间和时间成分,这就具有挑战性,特别是在计算复杂性方面。本研究调查了在 Just Another Gibbs Sampler(JAGS)环境中创建模型的两种可选下标策略及其在运行时间方面的性能。我们的研究结果有助于从业人员确保高效、及时地实施贝叶斯时空传染病建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1