{"title":"Interpreting correlations in stress-dependent permeability, porosity, and compressibility of rocks: A viewpoint from finite strain theory","authors":"Luyu Wang, Yanjun Zhang","doi":"10.1002/nag.3720","DOIUrl":null,"url":null,"abstract":"<p>Characteristics of stress-dependent properties of rocks are commonly described by empirical laws. It is crucial to establish a universal law that connects rock properties with stress. The present study focuses on exploring the correlations among permeability, porosity, and compressibility observed in experiments. To achieve this, we propose a novel finite strain-based dual-component (FS-DC) model, grounded in the finite strain theory within the framework of continuum mechanics. The FS-DC model decomposes the original problem into the rock matrix and micro-pores/cracks components. The deformation gradient tensor is utilized to derive the constitutive relations. One of the novelties is that the stress-dependent variables are calculated in the current configuration, in contrast to the reference configuration used in small deformation theory. The model has only a few number of parameters, each with specific physical interpretations. It can be reduced to existing models with appropriate simplifications. Then, model performance is examined against experimental data, including permeability, porosity, compressibility, volumetric strain and specific storage. It proves that the variations of these properties are effectively described by the proposed model. Further analysis reveals the effect of pores/cracks parameters. The validity of the FS-DC model is examined across a broad range of pressures. The results show that rock properties at high confining pressures (<span></span><math>\n <semantics>\n <mo>></mo>\n <annotation>$&gt;$</annotation>\n </semantics></math>300 MPa) differ from those observed under relatively low pressures (<span></span><math>\n <semantics>\n <mo><</mo>\n <annotation>$&lt;$</annotation>\n </semantics></math>200 MPa). This disparity can be attributed to inelastic behaviors of micro-structure, wherein the rock skeleton undergoes permanent deformation and breakage.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nag.3720","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3720","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Characteristics of stress-dependent properties of rocks are commonly described by empirical laws. It is crucial to establish a universal law that connects rock properties with stress. The present study focuses on exploring the correlations among permeability, porosity, and compressibility observed in experiments. To achieve this, we propose a novel finite strain-based dual-component (FS-DC) model, grounded in the finite strain theory within the framework of continuum mechanics. The FS-DC model decomposes the original problem into the rock matrix and micro-pores/cracks components. The deformation gradient tensor is utilized to derive the constitutive relations. One of the novelties is that the stress-dependent variables are calculated in the current configuration, in contrast to the reference configuration used in small deformation theory. The model has only a few number of parameters, each with specific physical interpretations. It can be reduced to existing models with appropriate simplifications. Then, model performance is examined against experimental data, including permeability, porosity, compressibility, volumetric strain and specific storage. It proves that the variations of these properties are effectively described by the proposed model. Further analysis reveals the effect of pores/cracks parameters. The validity of the FS-DC model is examined across a broad range of pressures. The results show that rock properties at high confining pressures (300 MPa) differ from those observed under relatively low pressures (200 MPa). This disparity can be attributed to inelastic behaviors of micro-structure, wherein the rock skeleton undergoes permanent deformation and breakage.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.