Caitlin Wilkinson, Jan Vigués, Marianne Stoessel, Mikael Vinka, Anders Angerbjörn, Karin Norén
{"title":"Phase-dependent red fox expansion into the tundra: implications for management","authors":"Caitlin Wilkinson, Jan Vigués, Marianne Stoessel, Mikael Vinka, Anders Angerbjörn, Karin Norén","doi":"10.1002/jwmg.22569","DOIUrl":null,"url":null,"abstract":"<p>Expansion of boreal species into tundra ecosystems is a consequence of climate change and human exploitation that threatens local species through increased predation, competition, and pathogen transmission. Under these circumstances, efficient control of expanding boreal species may be necessary, but the efficiency of such action depends on understanding the ecological influences of expansion. The red fox (<i>Vulpes vulpes</i>) is expanding into the tundra across the Arctic. In Scandinavia, red foxes threaten local tundra species and communities including the endangered Arctic fox (<i>V. lagopus</i>). The ecological dynamics in the tundra are influenced by small rodent cycles (classified into different phases based on seasonal abundance fluctuations), which can affect red fox expansion, distribution, and abundance. We used a 17-year (2004–2020) dataset from the tundra in Sweden, consisting of raw snow track data, to test how cyclic prey influenced red fox distribution and abundance, and subsequently red fox control. The winter abundance of red fox was influenced by small rodent phase, with higher abundance during high prey availability (i.e., increased number of prey numbers) with no support for a time lag between red fox and small rodent abundance. This suggests that high prey availability attracts red foxes to the tundra and that higher immigration from the boreal zone can be expected in response to increased prey abundances. There was no relationship between red fox control and small rodent availability, but control was influenced by red fox abundance during the previous year, which highlights an opportunistic control strategy. We recommend an adaptive management strategy where authorities include small rodent dynamics in the planning and execution of red fox control.</p>","PeriodicalId":17504,"journal":{"name":"Journal of Wildlife Management","volume":"88 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.22569","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jwmg.22569","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Expansion of boreal species into tundra ecosystems is a consequence of climate change and human exploitation that threatens local species through increased predation, competition, and pathogen transmission. Under these circumstances, efficient control of expanding boreal species may be necessary, but the efficiency of such action depends on understanding the ecological influences of expansion. The red fox (Vulpes vulpes) is expanding into the tundra across the Arctic. In Scandinavia, red foxes threaten local tundra species and communities including the endangered Arctic fox (V. lagopus). The ecological dynamics in the tundra are influenced by small rodent cycles (classified into different phases based on seasonal abundance fluctuations), which can affect red fox expansion, distribution, and abundance. We used a 17-year (2004–2020) dataset from the tundra in Sweden, consisting of raw snow track data, to test how cyclic prey influenced red fox distribution and abundance, and subsequently red fox control. The winter abundance of red fox was influenced by small rodent phase, with higher abundance during high prey availability (i.e., increased number of prey numbers) with no support for a time lag between red fox and small rodent abundance. This suggests that high prey availability attracts red foxes to the tundra and that higher immigration from the boreal zone can be expected in response to increased prey abundances. There was no relationship between red fox control and small rodent availability, but control was influenced by red fox abundance during the previous year, which highlights an opportunistic control strategy. We recommend an adaptive management strategy where authorities include small rodent dynamics in the planning and execution of red fox control.
期刊介绍:
The Journal of Wildlife Management publishes manuscripts containing information from original research that contributes to basic wildlife science. Suitable topics include investigations into the biology and ecology of wildlife and their habitats that has direct or indirect implications for wildlife management and conservation. This includes basic information on wildlife habitat use, reproduction, genetics, demographics, viability, predator-prey relationships, space-use, movements, behavior, and physiology; but within the context of contemporary management and conservation issues such that the knowledge may ultimately be useful to wildlife practitioners. Also considered are theoretical and conceptual aspects of wildlife science, including development of new approaches to quantitative analyses, modeling of wildlife populations and habitats, and other topics that are germane to advancing wildlife science. Limited reviews or meta analyses will be considered if they provide a meaningful new synthesis or perspective on an appropriate subject. Direct evaluation of management practices or policies should be sent to the Wildlife Society Bulletin, as should papers reporting new tools or techniques. However, papers that report new tools or techniques, or effects of management practices, within the context of a broader study investigating basic wildlife biology and ecology will be considered by The Journal of Wildlife Management. Book reviews of relevant topics in basic wildlife research and biology.