D. Chicot, A. Montagne, A. Mejias, F. Roudet, T. Coorevits
{"title":"Improvement in Calibration Procedure in Nanoindentation: An Indenter Bluntness Indicator","authors":"D. Chicot, A. Montagne, A. Mejias, F. Roudet, T. Coorevits","doi":"10.1007/s11340-024-01048-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Nanoindentation experiments require the calibration of the tip area function, which involves up to 9 fitting coefficients following classical method. These coefficients are determined from indentation tests on a reference material. However, their values may vary from one test batch to another. Consequently, these coefficients cannot describe the amplitude of the indenter tip defect.</p><h3>Objective</h3><p>The main objective of this study is to propose a contact area function that uses only one fitting coefficient to represent the indenter tip defect. This coefficient corresponds to the distance between the blunt and ideal indenter tip.</p><h3>Methodology</h3><p>To demonstrate the efficiency of the proposed contact area function, we reanalyzed nearly 40 calibration procedures, while keeping the same experimental protocol, performed between 2014 and today. A novel two-step calibration methodology is advanced. We compared the results of the proposed method to those obtained with the classic methodology.</p><h3>Results</h3><p>This two-step methodology was applied to a fused silica calibration sample. The values of the Young's modulus and instrumented hardness are equals to 71 and 10 GPa, respectively. The length of the indenter tip defect increases gradually from 5 to 30 nm accordingly to the frequency of use of the indenter. The values of the mechanical properties calculated by this methodology are in good agreement with those obtained using the classical contact area function.</p><h3>Conclusion</h3><p>The methodology presented in this paper demonstrates its ability to accurately calibrate the tip area function. This new calibration procedure considers both the Young’s modulus and the tip defect parameter as free parameters. Furthermore, the calibration parameters have a clear physical meaning and their values remain stables from one batch to another.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 4","pages":"467 - 485"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01048-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Nanoindentation experiments require the calibration of the tip area function, which involves up to 9 fitting coefficients following classical method. These coefficients are determined from indentation tests on a reference material. However, their values may vary from one test batch to another. Consequently, these coefficients cannot describe the amplitude of the indenter tip defect.
Objective
The main objective of this study is to propose a contact area function that uses only one fitting coefficient to represent the indenter tip defect. This coefficient corresponds to the distance between the blunt and ideal indenter tip.
Methodology
To demonstrate the efficiency of the proposed contact area function, we reanalyzed nearly 40 calibration procedures, while keeping the same experimental protocol, performed between 2014 and today. A novel two-step calibration methodology is advanced. We compared the results of the proposed method to those obtained with the classic methodology.
Results
This two-step methodology was applied to a fused silica calibration sample. The values of the Young's modulus and instrumented hardness are equals to 71 and 10 GPa, respectively. The length of the indenter tip defect increases gradually from 5 to 30 nm accordingly to the frequency of use of the indenter. The values of the mechanical properties calculated by this methodology are in good agreement with those obtained using the classical contact area function.
Conclusion
The methodology presented in this paper demonstrates its ability to accurately calibrate the tip area function. This new calibration procedure considers both the Young’s modulus and the tip defect parameter as free parameters. Furthermore, the calibration parameters have a clear physical meaning and their values remain stables from one batch to another.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.