How the repair bonding strength of hybrid ceramic CAD/CAM blocks is influenced by the use of surface treatments and universal adhesives.

IF 1.9 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Dental materials journal Pub Date : 2024-03-29 Epub Date: 2024-03-01 DOI:10.4012/dmj.2023-237
İbrahim Doğan, Emel Karaman
{"title":"How the repair bonding strength of hybrid ceramic CAD/CAM blocks is influenced by the use of surface treatments and universal adhesives.","authors":"İbrahim Doğan, Emel Karaman","doi":"10.4012/dmj.2023-237","DOIUrl":null,"url":null,"abstract":"<p><p>We examined how different methods of surface treatment and different universal adhesives with or without extra silane affected the repair bonding strength of hybrid ceramic CAD/CAM restorations. Cerasmart specimens (n=320) were subjected to thermocycling and assigned to the following surface pretreatment protocols: control, diamond bur (DB), hydrofluoric acid (HF), and tribochemical silica coating (TSC). Half the specimens received a coating of silane, followed by application of the universal adhesives Futurabond M+ (FMU), Tokuyama Universal Bond (TUB), Single Bond Universal (SBU), or Clearfil Universal Bond Quick (CUQ) (n=10). A hybrid composite resin was used to simulate repair; then the specimens underwent further thermocycling. Shear bond strength (SBS) was determined and modes of failure were examined. The TSC-CUQ silane (-) group showed the highest SBS values. The best repairs were obtained when the surface was treated with TSC, with the exception of the DB-TUB silane (-) group. TUB increased SBS more than the other adhesives. Additional silane decreased SBS in the HF-TUB and TSC-CUQ groups, while increasing it in the TSC-TUB and DB-FMU groups (p<0.05).</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"312-319"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-237","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

We examined how different methods of surface treatment and different universal adhesives with or without extra silane affected the repair bonding strength of hybrid ceramic CAD/CAM restorations. Cerasmart specimens (n=320) were subjected to thermocycling and assigned to the following surface pretreatment protocols: control, diamond bur (DB), hydrofluoric acid (HF), and tribochemical silica coating (TSC). Half the specimens received a coating of silane, followed by application of the universal adhesives Futurabond M+ (FMU), Tokuyama Universal Bond (TUB), Single Bond Universal (SBU), or Clearfil Universal Bond Quick (CUQ) (n=10). A hybrid composite resin was used to simulate repair; then the specimens underwent further thermocycling. Shear bond strength (SBS) was determined and modes of failure were examined. The TSC-CUQ silane (-) group showed the highest SBS values. The best repairs were obtained when the surface was treated with TSC, with the exception of the DB-TUB silane (-) group. TUB increased SBS more than the other adhesives. Additional silane decreased SBS in the HF-TUB and TSC-CUQ groups, while increasing it in the TSC-TUB and DB-FMU groups (p<0.05).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合陶瓷 CAD/CAM 块的修复粘接强度如何受到表面处理和通用粘合剂的影响。
我们研究了不同的表面处理方法和含有或不含额外硅烷的通用粘合剂如何影响混合陶瓷 CAD/CAM 修复体的修复粘接强度。对 Cerasmart 试样(n=320)进行热循环处理,并将其分配给以下表面预处理方案:对照、金刚石毛刺 (DB)、氢氟酸 (HF) 和摩擦化学二氧化硅涂层 (TSC)。一半的试样涂上硅烷,然后涂上通用粘合剂 Futurabond M+ (FMU)、Tokuyama Universal Bond (TUB)、Single Bond Universal (SBU) 或 Clearfil Universal Bond Quick (CUQ)(n=10)。使用混合复合树脂模拟修复,然后对试样进行进一步的热循环处理。测定剪切粘接强度(SBS)并检查破坏模式。TSC-CUQ 硅烷(-)组的 SBS 值最高。除 DB-TUB 硅烷(-)组外,用 TSC 对表面进行处理的修复效果最好。TUB 比其他粘合剂更能提高 SBS。附加硅烷会降低 HF-TUB 和 TSC-CUQ 组的 SBS 值,而增加 TSC-TUB 和 DB-FMU 组的 SBS 值(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dental materials journal
Dental materials journal 医学-材料科学:生物材料
CiteScore
4.60
自引率
4.00%
发文量
102
审稿时长
3 months
期刊介绍: Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.
期刊最新文献
Effects of repetitive insertion/removal and occlusal load on the retentive force of rest plate-I bar clasps made by selective laser melting. Shape reproducibility of retentive devices made of cast titanium. Bond strength of 4META-MMA-TBB resin to a CAD/CAM composite resin block and analysis of acetone-insoluble cured resin residues at adhesive interfaces. Effect of rosmarinic acid on microtensile bond strength of 1-step self-etch adhesive on artificial caries-affected dentine with or without NaOCl treatment: An in-vitro study. Rheological properties and handling characteristics of four injectable calcium hydroxide pastes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1