A tongue-controlled intraoral pointing device for operating information and communication terminals, such as computers, which allows the wearer to perform oral training while typing, was developed. Its effectiveness was evaluated in healthy participants. There were no differences in typing speed for the same input between computers with any operating system/display combination. Typing with the developed device was performed at 80% of the speed compared to using a stylus pen held in the mouth, the conventional method used by persons with upper limb disabilities. Electromyography signals increased concomitantly by 1.8-fold in the buccal and 2.0-fold in the submandibular area. There was a 2.5-fold increase in saliva secretion and a decrease in salivary α-amylase activity to 40%, indicative of stress. The computerized operation of this device is expected to contribute to the prevention of oral frailty by maintaining and strengthening oral functions and hygiene.
{"title":"Tongue-controlled intraoral pointing device that promotes perioral muscular activity and saliva secretion during operation of information and communication terminals.","authors":"Takashi Kameda, Makoto Sakamoto, Kazuto Terada, Shunya Oka, Sakurako Kobayashi","doi":"10.4012/dmj.2024-295","DOIUrl":"https://doi.org/10.4012/dmj.2024-295","url":null,"abstract":"<p><p>A tongue-controlled intraoral pointing device for operating information and communication terminals, such as computers, which allows the wearer to perform oral training while typing, was developed. Its effectiveness was evaluated in healthy participants. There were no differences in typing speed for the same input between computers with any operating system/display combination. Typing with the developed device was performed at 80% of the speed compared to using a stylus pen held in the mouth, the conventional method used by persons with upper limb disabilities. Electromyography signals increased concomitantly by 1.8-fold in the buccal and 2.0-fold in the submandibular area. There was a 2.5-fold increase in saliva secretion and a decrease in salivary α-amylase activity to 40%, indicative of stress. The computerized operation of this device is expected to contribute to the prevention of oral frailty by maintaining and strengthening oral functions and hygiene.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
People with osteoporosis, common among middle-aged and elderly individuals, often need dental implants. Titanium implants, though generally safe, can cause problems due to their stiffness, especially in osteoporotic bone, leading to fractures. This study aims to identify gradient types that offer improved biological adaptation. This was achieved by comparing the mechanical properties of four new two-dimensional functional gradient materials (FGMs) implants to those of conventional and one-dimensional FGM implants in healthy and osteoporotic bone models. The new FGM implants, with reduced stiffness at the bottom and outer parts, kept strain on cancellous bone within safe limits, reducing fracture risk. Notably, the FGM RA L-H implant maintained strain levels within the optimal range (1,500-3,000 µɛ), promoting bone healing and remodeling. By evaluating the stresses and strains, it was concluded that the FGM RA L-H implant is well adapted to significantly reduce stresses and improve bone recovery in healthy and osteoporotic bones.
{"title":"Biomechanical analysis of axial-radial integrated functional gradient material implants in healthy and osteoporotic bones.","authors":"Yanzhao Ma, Zhexuan Yang, Boshen Yu, Kun Lyu, Jian Wu, Baohua Chen, Kena Ma, Yiqun Hu, Dong Chen","doi":"10.4012/dmj.2024-222","DOIUrl":"https://doi.org/10.4012/dmj.2024-222","url":null,"abstract":"<p><p>People with osteoporosis, common among middle-aged and elderly individuals, often need dental implants. Titanium implants, though generally safe, can cause problems due to their stiffness, especially in osteoporotic bone, leading to fractures. This study aims to identify gradient types that offer improved biological adaptation. This was achieved by comparing the mechanical properties of four new two-dimensional functional gradient materials (FGMs) implants to those of conventional and one-dimensional FGM implants in healthy and osteoporotic bone models. The new FGM implants, with reduced stiffness at the bottom and outer parts, kept strain on cancellous bone within safe limits, reducing fracture risk. Notably, the FGM RA L-H implant maintained strain levels within the optimal range (1,500-3,000 µɛ), promoting bone healing and remodeling. By evaluating the stresses and strains, it was concluded that the FGM RA L-H implant is well adapted to significantly reduce stresses and improve bone recovery in healthy and osteoporotic bones.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study was to investigate the wear behavior of pure titanium when opposed to six different crown restorative materials. Abrader specimens were prepared by casting pure titanium and these were paired with substrates including pure titanium, resin composite, lithium disilicate, zirconia, silver-palladium-copper (Ag-Pd-Cu) alloy, and bovine enamel. The wear volume of each abrader and substrate specimen was measured using the two-body wear test, and factors affecting wear behavior, such as microstructures and hardness, were evaluated. Results indicated that titanium-to-titanium abrasion caused significant wear in both the abrader and the substrate. In contrast, no significant wear was observed for the zirconia and Ag-Pd-Cu alloy against titanium. SEM images showed linear wear marks in most specimens other than zirconia and resin composite, microcracks in enamel, and filler fall in resin composite. A strong correlation between the wear volume and Vickers hardness was found for ceramics, resin composites, and enamel. However, due to the small slope of the approximate straight line in this correlation suggests that the wear behavior of materials when abraded by titanium is only partially influenced by the microstructure and hardness of the material.
{"title":"Wear behavior of crown restoration materials and bovine tooth enamel opposed by pure titanium.","authors":"Hiroki Kagoura, Rika Munakata, Masaaki Kasahara, Tomoko Someya, Masayuki Hattori","doi":"10.4012/dmj.2024-078","DOIUrl":"https://doi.org/10.4012/dmj.2024-078","url":null,"abstract":"<p><p>The purpose of this study was to investigate the wear behavior of pure titanium when opposed to six different crown restorative materials. Abrader specimens were prepared by casting pure titanium and these were paired with substrates including pure titanium, resin composite, lithium disilicate, zirconia, silver-palladium-copper (Ag-Pd-Cu) alloy, and bovine enamel. The wear volume of each abrader and substrate specimen was measured using the two-body wear test, and factors affecting wear behavior, such as microstructures and hardness, were evaluated. Results indicated that titanium-to-titanium abrasion caused significant wear in both the abrader and the substrate. In contrast, no significant wear was observed for the zirconia and Ag-Pd-Cu alloy against titanium. SEM images showed linear wear marks in most specimens other than zirconia and resin composite, microcracks in enamel, and filler fall in resin composite. A strong correlation between the wear volume and Vickers hardness was found for ceramics, resin composites, and enamel. However, due to the small slope of the approximate straight line in this correlation suggests that the wear behavior of materials when abraded by titanium is only partially influenced by the microstructure and hardness of the material.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mintae Lee, You-Jung Kang, Yeseul Park, Hyun Jeong Jeon, Jee-Hwan Kim
This study investigated the effect of vacuum plasma treatment on the shear bond strength (SBS) of three-dimensional (3D)-printed resin and resin cement. Specimens were categorized based on airborne-particle abrasion (APA), plasma, and bonding agent treatments. Long-term adhesive stability was examined by comparing their SBSs before and after thermocycling. The group with the bonding agent applied after plasma treatment and before thermocycling exhibited the highest SBS of 23.9±2.2 MPa. No significant SBS difference was observed among the remaining groups, except for that subjected only to plasma treatment after thermocycling. The wettability of distilled water improved in the groups treated with plasma, whereas that of the bonding agent decreased in the group treated only with APA. Surface analysis revealed a roughened surface on the plasma-treated 3D-printed resin. Therefore, vacuum-plasma treatment before thermocycling can enhance the SBS of 3D-printed resin without compromising its properties.
{"title":"Effect of vacuum plasma treatment on the shear bond strength of 3D-printed resin and self-adhesive resin cement.","authors":"Mintae Lee, You-Jung Kang, Yeseul Park, Hyun Jeong Jeon, Jee-Hwan Kim","doi":"10.4012/dmj.2024-128","DOIUrl":"https://doi.org/10.4012/dmj.2024-128","url":null,"abstract":"<p><p>This study investigated the effect of vacuum plasma treatment on the shear bond strength (SBS) of three-dimensional (3D)-printed resin and resin cement. Specimens were categorized based on airborne-particle abrasion (APA), plasma, and bonding agent treatments. Long-term adhesive stability was examined by comparing their SBSs before and after thermocycling. The group with the bonding agent applied after plasma treatment and before thermocycling exhibited the highest SBS of 23.9±2.2 MPa. No significant SBS difference was observed among the remaining groups, except for that subjected only to plasma treatment after thermocycling. The wettability of distilled water improved in the groups treated with plasma, whereas that of the bonding agent decreased in the group treated only with APA. Surface analysis revealed a roughened surface on the plasma-treated 3D-printed resin. Therefore, vacuum-plasma treatment before thermocycling can enhance the SBS of 3D-printed resin without compromising its properties.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Aldhafyan, Abdel-Basit Al-Odayni, Waseem Sharaf Saeed, Rawaiz Khan, Ali Alrahlah
This study investigated the thermal stability and top-to-bottom hardness ratio of six bulk-fill composites (STARK® Bulk Fill Composite, Filtek™ One Bulk Fill Restorative, SDR® Plus Bulk Fill Flowable, Tetric® N-Ceram Bulk Fill, X-tra fil, and Beautifil-Bulk Restorative) following acidic softening. Discs-shaped specimens were fabricated and photo-cured for 20 s. Vickers hardness was sequentially measured, immediately after irradiation (VH0), after 24 h of dry storage (VHdry) and after 24 h of acidic storage (VHacidic) at 37°C. Network integrity was assessed by comparing the relative hardness decrease (VHRD) after acidic softening with the initial maximum rate temperature (IRT) of mass loss. Compared to VH0, VHdry significantly increased, whereas VHacidic significantly decreased. The VHRD of top surface ranged from 16.62% for FBF to 62.84% for SDR. IRT primarily reflects resin composition and residue is a filler-based value. Relative network integrity estimated by IRT revealed a negative correlation with VHRD. Consequently, acidic erosion hardness development can be indirectly employed to assess network integrity in bulk-fill composites.
{"title":"Network integrity of bulk-fill composites: Thermal stability, post-curing hardness development and acidic softening.","authors":"Mohammed Aldhafyan, Abdel-Basit Al-Odayni, Waseem Sharaf Saeed, Rawaiz Khan, Ali Alrahlah","doi":"10.4012/dmj.2024-247","DOIUrl":"https://doi.org/10.4012/dmj.2024-247","url":null,"abstract":"<p><p>This study investigated the thermal stability and top-to-bottom hardness ratio of six bulk-fill composites (STARK<sup>®</sup> Bulk Fill Composite, Filtek™ One Bulk Fill Restorative, SDR<sup>®</sup> Plus Bulk Fill Flowable, Tetric<sup>®</sup> N-Ceram Bulk Fill, X-tra fil, and Beautifil-Bulk Restorative) following acidic softening. Discs-shaped specimens were fabricated and photo-cured for 20 s. Vickers hardness was sequentially measured, immediately after irradiation (VH<sub>0</sub>), after 24 h of dry storage (VH<sub>dry</sub>) and after 24 h of acidic storage (VH<sub>acidic</sub>) at 37°C. Network integrity was assessed by comparing the relative hardness decrease (VH<sub>RD</sub>) after acidic softening with the initial maximum rate temperature (IRT) of mass loss. Compared to VH<sub>0</sub>, VH<sub>dry</sub> significantly increased, whereas VH<sub>acidic</sub> significantly decreased. The VH<sub>RD</sub> of top surface ranged from 16.62% for FBF to 62.84% for SDR. IRT primarily reflects resin composition and residue is a filler-based value. Relative network integrity estimated by IRT revealed a negative correlation with VH<sub>RD</sub>. Consequently, acidic erosion hardness development can be indirectly employed to assess network integrity in bulk-fill composites.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kanae Wada, Sufyan Garoushi, Junichiro Wada, Tsutomu Iwamoto, Pekka K Vallittu, Lippo Lassila
In clinical applications, computer-aided design/computer-aided manufacturing (CAD-CAM) blocks must exhibit behavior similar to that of deciduous teeth. The purpose of this study was to evaluate the material properties and suitability of CAD-CAM as deciduous teeth. Experimental fiber-reinforced CAD-CAM composites (FRC) and various CAD-CAM (lithium disilicate ceramic: IPS, hybrid ceramic: VEM, five composite resins, and PMMA) and enamels (deciduous and permanent teeth) were subjected to nanoindentation to evaluate material properties, including nanohardness and nano-reduced elastic modulus. Energy dispersive X-ray spectrometry was conducted in combination with SEM to evaluate the elemental and microstructural properties. FRC-fiber (2.94 GPa), VEM-ceramic (3.20 GPa), and IPS (3.63 GPa) showed no statistically significant differences compared to deciduous enamel (3.37 GPa). Various CAD-CAM materials were confirmed to exhibit sufficient nanohardness and nano-reduced elastic modulus and a strong microstructure, indicating their potential for application in the restorative treatment of full crowns of deciduous teeth.
{"title":"Mechanical and structural characterization of CAD-CAM materials and enamel of deciduous and permanent teeth.","authors":"Kanae Wada, Sufyan Garoushi, Junichiro Wada, Tsutomu Iwamoto, Pekka K Vallittu, Lippo Lassila","doi":"10.4012/dmj.2024-245","DOIUrl":"https://doi.org/10.4012/dmj.2024-245","url":null,"abstract":"<p><p>In clinical applications, computer-aided design/computer-aided manufacturing (CAD-CAM) blocks must exhibit behavior similar to that of deciduous teeth. The purpose of this study was to evaluate the material properties and suitability of CAD-CAM as deciduous teeth. Experimental fiber-reinforced CAD-CAM composites (FRC) and various CAD-CAM (lithium disilicate ceramic: IPS, hybrid ceramic: VEM, five composite resins, and PMMA) and enamels (deciduous and permanent teeth) were subjected to nanoindentation to evaluate material properties, including nanohardness and nano-reduced elastic modulus. Energy dispersive X-ray spectrometry was conducted in combination with SEM to evaluate the elemental and microstructural properties. FRC-fiber (2.94 GPa), VEM-ceramic (3.20 GPa), and IPS (3.63 GPa) showed no statistically significant differences compared to deciduous enamel (3.37 GPa). Various CAD-CAM materials were confirmed to exhibit sufficient nanohardness and nano-reduced elastic modulus and a strong microstructure, indicating their potential for application in the restorative treatment of full crowns of deciduous teeth.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study is to investigate the effects of surface treatment methods using polyetheretherketone (PEEK) (with or without a functional monomer-containing primer following treatment with alumina blasting or concentrated sulfuric acid) on the shear bond strength (SBS) of resin luting material after artificial aging. The PEEK specimens were classified into five groups according to their treatment methods: untreated, alumina blasting (AB), concentrated sulfuric acid (SA), alumina blasting+primer (ABP), and concentrated SA+primer (SAP). The SBS score of each group was determined experimentally using a universal testing machine. The SBS tests revealed that the initial bond strengths of ABP and SAP were significantly higher than those of AB and SA. In addition, both SBS after 20,000 thermal cycles remained high (>15 MPa). These results suggest that the ABP and SAP groups are the best predictive methods for evaluating SBS with PEEK and resin cement.
本研究的目的是探讨聚醚醚酮(PEEK)表面处理方法(氧化铝喷射或浓硫酸处理后使用或不使用含功能单体的底漆)对人工老化后树脂敷层材料剪切结合强度(SBS)的影响。根据处理方法将 PEEK 试样分为五组:未处理组、氧化铝喷射组(AB)、浓硫酸组(SA)、氧化铝喷射+底漆组(ABP)和浓硫酸组+底漆组(SAP)。各组的 SBS 评分是通过万能试验机进行实验测定的。SBS 测试表明,ABP 和 SAP 的初始粘接强度明显高于 AB 和 SA。此外,经过 20,000 次热循环后,这两种材料的 SBS 仍保持较高水平(大于 15 兆帕)。这些结果表明,ABP 和 SAP 组是评估 PEEK 和树脂水泥 SBS 的最佳预测方法。
{"title":"Effects of PEEK surface treatment using alumina blasting or concentrated sulfuric acid etching in combination with functional monomers on shear bond strength to adhesive cement after artificial aging.","authors":"Maowei Zhong, Ryuhei Kanda, Susumu Tsuda, Yoshiya Hashimoto, Ruonan Zhang, Takamasa Fujii, Kosuke Kashiwagi","doi":"10.4012/dmj.2024-233","DOIUrl":"https://doi.org/10.4012/dmj.2024-233","url":null,"abstract":"<p><p>The purpose of this study is to investigate the effects of surface treatment methods using polyetheretherketone (PEEK) (with or without a functional monomer-containing primer following treatment with alumina blasting or concentrated sulfuric acid) on the shear bond strength (SBS) of resin luting material after artificial aging. The PEEK specimens were classified into five groups according to their treatment methods: untreated, alumina blasting (AB), concentrated sulfuric acid (SA), alumina blasting+primer (ABP), and concentrated SA+primer (SAP). The SBS score of each group was determined experimentally using a universal testing machine. The SBS tests revealed that the initial bond strengths of ABP and SAP were significantly higher than those of AB and SA. In addition, both SBS after 20,000 thermal cycles remained high (>15 MPa). These results suggest that the ABP and SAP groups are the best predictive methods for evaluating SBS with PEEK and resin cement.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this study was to investigate the effects of repetitive removal/insertion and a load equivalent to the occlusal force on the retentive force of rest plate-I bar (RPI) clasps fabricated by selective laser melting (SLM) on powder bed fusion. RPI clasp fabricated by SLM and casting were evaluated to the retentive force by repetitive removal/insertion (SLM-RI and Cast-RI), and the retentive force of RPI clasp by SLM was also evaluated by repetitive removal/insertion under load (SLM-L). SLM-RI group was kept superior retentive force during repetitive removal/insertion than Cast-RI group. SLM-L group showed the decrease of retentive force, and all specimens fractured during less than 7,000 repetitive removal/insertion. In SLM-L, the fracture of RPI clasp occurred at minor connector due to stress concentration. In conclusion, the RPI clasp by SLM demonstrated the superior retentive force and fitting for repetitive removal/insertion, yet improvements were necessary to withstand a load equivalent to occlusal force.
{"title":"Effects of repetitive insertion/removal and occlusal load on the retentive force of rest plate-I bar clasps made by selective laser melting.","authors":"Yuki Uekubo, Yoshimitsu Kato, Keita Tomono, Mitsuo Kato, Juro Wadachi, Shinji Takemoto, Shuichiro Yamashita","doi":"10.4012/dmj.2024-271","DOIUrl":"10.4012/dmj.2024-271","url":null,"abstract":"<p><p>The objective of this study was to investigate the effects of repetitive removal/insertion and a load equivalent to the occlusal force on the retentive force of rest plate-I bar (RPI) clasps fabricated by selective laser melting (SLM) on powder bed fusion. RPI clasp fabricated by SLM and casting were evaluated to the retentive force by repetitive removal/insertion (SLM-RI and Cast-RI), and the retentive force of RPI clasp by SLM was also evaluated by repetitive removal/insertion under load (SLM-L). SLM-RI group was kept superior retentive force during repetitive removal/insertion than Cast-RI group. SLM-L group showed the decrease of retentive force, and all specimens fractured during less than 7,000 repetitive removal/insertion. In SLM-L, the fracture of RPI clasp occurred at minor connector due to stress concentration. In conclusion, the RPI clasp by SLM demonstrated the superior retentive force and fitting for repetitive removal/insertion, yet improvements were necessary to withstand a load equivalent to occlusal force.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"93-102"},"PeriodicalIF":1.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dental titanium implants and their surface modifications markedly improve implant biocompatibility. However, studies evaluating the mechanical biocompatibility of implants are scarce. In particular, the analysis of mechanical biocompatibility deficiencies leading to stress shield-induced bone resorption. Recently, we focused on using PEEK as a dental material. This study explored the hypothesis that PEEK implants improve the stress shielding of titanium. In this study, artificial bone surfaces were examined to measure strains on the artificial bone surface under compressive loading with the implants in place. Additionally, 3D image analysis of the fracture state inside the bone tissue was performed using micro-CT (µCT). This hypothesis was supported by µCT imaging analysis of bone tissue changes under stress, which revealed that PEEK implants transfer greater loads than titanium implants. µCT imaging and statistical analysis showed that bone porosity had little effect on stress shielding.
{"title":"PEEK stress-shielding with artificial bone for dental implants.","authors":"Eiji Yoshida, Rie Nomoto, Yasuharu Amitani, Tohru Hayakawa","doi":"10.4012/dmj.2024-203","DOIUrl":"10.4012/dmj.2024-203","url":null,"abstract":"<p><p>Dental titanium implants and their surface modifications markedly improve implant biocompatibility. However, studies evaluating the mechanical biocompatibility of implants are scarce. In particular, the analysis of mechanical biocompatibility deficiencies leading to stress shield-induced bone resorption. Recently, we focused on using PEEK as a dental material. This study explored the hypothesis that PEEK implants improve the stress shielding of titanium. In this study, artificial bone surfaces were examined to measure strains on the artificial bone surface under compressive loading with the implants in place. Additionally, 3D image analysis of the fracture state inside the bone tissue was performed using micro-CT (µCT). This hypothesis was supported by µCT imaging analysis of bone tissue changes under stress, which revealed that PEEK implants transfer greater loads than titanium implants. µCT imaging and statistical analysis showed that bone porosity had little effect on stress shielding.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"121-127"},"PeriodicalIF":1.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142978015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study was to construct an artificial intelligence object detection model to detect the articular disk from temporomandibular joint (TMJ) magnetic resonance (MR) images using YOLO series. The study included two experiments using datasets from different MR imaging machines. A total of 536 MR images were retrospectively examined. The performance of YOLOv5 and YOLOv8 in detecting the TMJ articular disk in both normal and displaced conditions was evaluated. The impact of image-processing techniques, such as histogram equalization (HE) and contrast-limited adaptive HE (CLAHE) on model performance, was also examined. The results showed that the YOLO series could detect the articular disk regardless of displacement, with superior performance on images of normal disk position. The results suggest the applicability of object detection models in improving the diagnosis of TMJ disorders.
{"title":"Detecting the articular disk in magnetic resonance images of the temporomandibular joint using YOLO series.","authors":"Yuki Yoshimi, Yuichi Mine, Kohei Yamamoto, Shota Okazaki, Shota Ito, Mizuho Sano, Tzu-Yu Peng, Takashi Nakamoto, Toshikazu Nagasaki, Naoya Kakimoto, Takeshi Murayama, Kotaro Tanimoto","doi":"10.4012/dmj.2024-186","DOIUrl":"10.4012/dmj.2024-186","url":null,"abstract":"<p><p>The purpose of this study was to construct an artificial intelligence object detection model to detect the articular disk from temporomandibular joint (TMJ) magnetic resonance (MR) images using YOLO series. The study included two experiments using datasets from different MR imaging machines. A total of 536 MR images were retrospectively examined. The performance of YOLOv5 and YOLOv8 in detecting the TMJ articular disk in both normal and displaced conditions was evaluated. The impact of image-processing techniques, such as histogram equalization (HE) and contrast-limited adaptive HE (CLAHE) on model performance, was also examined. The results showed that the YOLO series could detect the articular disk regardless of displacement, with superior performance on images of normal disk position. The results suggest the applicability of object detection models in improving the diagnosis of TMJ disorders.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"103-111"},"PeriodicalIF":1.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}