Modelling active layer thickness in mountain permafrost based on an analytical solution of the heat transport equation, Kitzsteinhorn, Hohe Tauern Range, Austria

IF 2.8 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Dynamics Pub Date : 2024-03-04 DOI:10.5194/egusphere-2023-3006
Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, Stephan Peth
{"title":"Modelling active layer thickness in mountain permafrost based on an analytical solution of the heat transport equation, Kitzsteinhorn, Hohe Tauern Range, Austria","authors":"Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, Stephan Peth","doi":"10.5194/egusphere-2023-3006","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The active layer thickness (ALT) refers to the seasonal thaw depth of a permafrost body and is an essential parameter for natural hazard analysis, construction, land-use planning and the estimation of greenhouse gas emissions in periglacial regions. The aim of this study is to model the annual maximum thaw depth for determining ALT based on temperature data measured in four shallow boreholes (SBs, 0.1 m deep) in the summit region of the Kitzsteinhorn (Hohe Tauern Range, Austria, Europe). We set up our heat flow model with temperature data (2016–21) from a 30 m deep borehole (DB) drilled into bedrock at the Kitzsteinhorn north-face. For modeling purposes, we assume 1D conductive heat flow and present an analytical solution of the heat transport equation through sinusoidal temperature waves resulting from seasonal temperature oscillations (damping depth method). The model approach is considered successful: In the validation period (2019–21), modeled and measured ALT differed by only 0.1±0.1 m. We then applied the DB-calibrated model to four SBs and found that the modeled seasonal ALT maximum ranged between 2.5 m (SB 2) and 10.6 m (SB 1) in the observation period (2013–2021). Due to small differences in altitude (~ 200 m) within the study area, slope aspect had the strongest impact on ALT. To project future ALT deepening due to global warming, we integrated IPCC climate scenarios SSP1-2.6 and SSP5-8.5 into our model. By mid-century (~ 2050), ALT is expected to increase by 48 % at SB 2 and by 62 % at DB under scenario SSP1-2.6 (56 % and 128 % under scenario SSP5-8.5), while permafrost will no longer be present at SB 1, SB 3 and SB 4. By the end of the century (~ 2100), permafrost will only remain under scenario SSP1-2.6 with an ALT increase of 51 % at SB 2 and of 69 % at DB.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"11 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-3006","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The active layer thickness (ALT) refers to the seasonal thaw depth of a permafrost body and is an essential parameter for natural hazard analysis, construction, land-use planning and the estimation of greenhouse gas emissions in periglacial regions. The aim of this study is to model the annual maximum thaw depth for determining ALT based on temperature data measured in four shallow boreholes (SBs, 0.1 m deep) in the summit region of the Kitzsteinhorn (Hohe Tauern Range, Austria, Europe). We set up our heat flow model with temperature data (2016–21) from a 30 m deep borehole (DB) drilled into bedrock at the Kitzsteinhorn north-face. For modeling purposes, we assume 1D conductive heat flow and present an analytical solution of the heat transport equation through sinusoidal temperature waves resulting from seasonal temperature oscillations (damping depth method). The model approach is considered successful: In the validation period (2019–21), modeled and measured ALT differed by only 0.1±0.1 m. We then applied the DB-calibrated model to four SBs and found that the modeled seasonal ALT maximum ranged between 2.5 m (SB 2) and 10.6 m (SB 1) in the observation period (2013–2021). Due to small differences in altitude (~ 200 m) within the study area, slope aspect had the strongest impact on ALT. To project future ALT deepening due to global warming, we integrated IPCC climate scenarios SSP1-2.6 and SSP5-8.5 into our model. By mid-century (~ 2050), ALT is expected to increase by 48 % at SB 2 and by 62 % at DB under scenario SSP1-2.6 (56 % and 128 % under scenario SSP5-8.5), while permafrost will no longer be present at SB 1, SB 3 and SB 4. By the end of the century (~ 2100), permafrost will only remain under scenario SSP1-2.6 with an ALT increase of 51 % at SB 2 and of 69 % at DB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热量传输方程解析解的山区永久冻土活动层厚度建模,奥地利基茨施泰因峰,奥地利霍赫陶恩山脉
摘要活动层厚度(ALT)指的是冻土体的季节性解冻深度,是冻土地区自然灾害分析、建筑、土地利用规划和温室气体排放估算的重要参数。本研究的目的是根据基茨施泰因峰(欧洲奥地利豪赫陶恩山脉)山顶地区四个浅钻孔(SB,0.1 米深)测得的温度数据,建立年度最大解冻深度模型,以确定 ALT。我们利用在基茨坦峰北面钻入基岩的 30 米深钻孔(DB)的温度数据(2016-21 年)建立了热流模型。出于建模目的,我们假设存在一维传导热流,并通过季节性温度振荡产生的正弦温度波(阻尼深度法)给出了热量传输方程的解析解。该模型方法被认为是成功的:在验证期(2019-21 年),模型和测量的 ALT 仅相差 0.1±0.1 米。然后,我们将 DB 校准模型应用于四个 SB,发现在观测期(2013-2021 年),模型的季节 ALT 最大值介于 2.5 米(SB 2)和 10.6 米(SB 1)之间。由于研究区域内海拔高度差异较小(约 200 米),坡度对 ALT 的影响最大。为了预测全球变暖导致的未来 ALT 加深,我们将 IPCC 气候情景 SSP1-2.6 和 SSP5-8.5 纳入了模型。到本世纪中期(约 2050 年),在 SSP1-2.6 情景下,SB 2 的 ALT 预计将增加 48%,DB 的 ALT 预计将增加 62%(在 SSP5-8.5 情景下分别增加 56% 和 128%),而 SB 1、SB 3 和 SB 4 将不再存在永久冻土。到本世纪末(约 2100 年),只有在 SSP1-2.6 情景下,SB 2 的 ALT 将增加 51%,DB 的 ALT 将增加 69%,永久冻土才会继续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth Surface Dynamics
Earth Surface Dynamics GEOGRAPHY, PHYSICALGEOSCIENCES, MULTIDISCI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
5.40
自引率
5.90%
发文量
56
审稿时长
20 weeks
期刊介绍: Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.
期刊最新文献
Exotic tree plantations in the Chilean Coastal Range: balancing the effects of discrete disturbances, connectivity, and a persistent drought on catchment erosion Role of the forcing sources in morphodynamic modelling of an embayed beach Equilibrium distance from long-range dune interactions An empirically-derived hydraulic head model controlling water storage and outflow over a decade in degraded permafrost rock slopes (Zugspitze, D/A) Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1