M. Kabir, J. Downer, E. Preller, C. Tarau, B. Yang, J. Xu
{"title":"Two-Phase Flow Boiling of Nanofluids in Mini- and Microchannels","authors":"M. Kabir, J. Downer, E. Preller, C. Tarau, B. Yang, J. Xu","doi":"10.1134/s0018151x23020074","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The effects of single-phase nanofluid flow in mini-/microchannels have been investigated both experimentally and numerically in the literature during the last decade. Almost all the studies show a similar trend by which the engagement of single-phase nanofluids to mini-/microchannels provides significant improvements in the thermal performance. However, there are only limited number of publications in the literature, which have experimentally focused on the heat transfer performance of nanofluids for two-phase flow boiling in mini-/microchannels. Moreover, there are some noticeably conflicting trends concluded by these experimental studies, particularly for the boiling heat transfer coefficient. In the present review, the key clue to figure out the contradictions reflected in the literature on the experimental measurements of boiling heat transfer coefficient is traced to the various deposition patterns of nanoparticles of different sizes on the boiling surface and subsequent changes in the morphology and boiling behavior as well. In addition, the crucial parameters of nanofluids in mini-/microchannels during flow boiling are identified and the effects of the parameters on the boiling heat transfer performance are comprehensively reviewed. The agreements and inconsistencies reported in the literature are also identified and discussed. Finally, a series of suggestions are provided for future experimental studies of nanofluids flow boiling to minimize the contradictory reports.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"35 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23020074","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of single-phase nanofluid flow in mini-/microchannels have been investigated both experimentally and numerically in the literature during the last decade. Almost all the studies show a similar trend by which the engagement of single-phase nanofluids to mini-/microchannels provides significant improvements in the thermal performance. However, there are only limited number of publications in the literature, which have experimentally focused on the heat transfer performance of nanofluids for two-phase flow boiling in mini-/microchannels. Moreover, there are some noticeably conflicting trends concluded by these experimental studies, particularly for the boiling heat transfer coefficient. In the present review, the key clue to figure out the contradictions reflected in the literature on the experimental measurements of boiling heat transfer coefficient is traced to the various deposition patterns of nanoparticles of different sizes on the boiling surface and subsequent changes in the morphology and boiling behavior as well. In addition, the crucial parameters of nanofluids in mini-/microchannels during flow boiling are identified and the effects of the parameters on the boiling heat transfer performance are comprehensively reviewed. The agreements and inconsistencies reported in the literature are also identified and discussed. Finally, a series of suggestions are provided for future experimental studies of nanofluids flow boiling to minimize the contradictory reports.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.