D. N. Matveev, T. S. Anokhina, V. V. Volkov, I. L. Borisov, A. V. Volkov
{"title":"Fabrication of Hollow Fiber Membranes: Effect of Process Parameters (Review)","authors":"D. N. Matveev, T. S. Anokhina, V. V. Volkov, I. L. Borisov, A. V. Volkov","doi":"10.1134/S2517751623070016","DOIUrl":null,"url":null,"abstract":"<p>Hollow fiber membranes originally developed in the 1960s for the reverse osmosis process have since then become widely used for diverse separation processes. The advantages of hollow fiber membranes include the low energy consumption, ease of operation and, among the most important ones, highly efficient operation in a small footprint (a large membrane area can be packed into a module unit). The production of hollow fiber membranes involves many spinning parameters to be controlled. The list of these parameters, in particular, includes the viscosity of the spinning solution, the design and geometric parameters of the spinneret, the extrusion speed of the polymer solution, the composition and temperature of the bore fluid, the type of external coagulant, the air gap distance, the draw ratio, etc. The effect of these parameters on the properties of hollow fiber membranes is reviewed. Research data pertaining to the modification of polymers, both commercially available and at the stage of their synthesis, are also presented in the context of membrane applications. In addition, the preparation of membranes using non-toxic or less toxic solvents is discussed.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"5 1 supplement","pages":"S1 - S21"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751623070016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hollow fiber membranes originally developed in the 1960s for the reverse osmosis process have since then become widely used for diverse separation processes. The advantages of hollow fiber membranes include the low energy consumption, ease of operation and, among the most important ones, highly efficient operation in a small footprint (a large membrane area can be packed into a module unit). The production of hollow fiber membranes involves many spinning parameters to be controlled. The list of these parameters, in particular, includes the viscosity of the spinning solution, the design and geometric parameters of the spinneret, the extrusion speed of the polymer solution, the composition and temperature of the bore fluid, the type of external coagulant, the air gap distance, the draw ratio, etc. The effect of these parameters on the properties of hollow fiber membranes is reviewed. Research data pertaining to the modification of polymers, both commercially available and at the stage of their synthesis, are also presented in the context of membrane applications. In addition, the preparation of membranes using non-toxic or less toxic solvents is discussed.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.