Parmeshwar Vitthal Gavande , Shyam Ji , Vânia Cardoso , Carlos M.G.A. Fontes , Arun Goyal
{"title":"Reassigning the role of a mesophilic xylan hydrolysing family GH43 β-xylosidase from Bacteroides ovatus, BoExXyl43A as exo-β-1,4-xylosidase","authors":"Parmeshwar Vitthal Gavande , Shyam Ji , Vânia Cardoso , Carlos M.G.A. Fontes , Arun Goyal","doi":"10.1016/j.crbiot.2024.100191","DOIUrl":null,"url":null,"abstract":"<div><p>The recombinant 40 kDa <em>Bo</em>ExXyl43A glycoside hydrolase family 43 (GH43) from bacterium <em>Bacteroides ovatus</em> exhibited highest specific activity (U/mg) against corn cob xylan (136.8), followed by Beechwood xylan (81.1), Carbosynth xylan (69.3), 4-<em>O</em>-D-methylglucuronoxylan (61.4) and Birchwood xylan (59.9). <em>Bo</em>ExXyl43A demonstrated optimal performance at 37 °C and pH 7.6 with V<sub>max</sub> and K<sub>m</sub> of 141.8 U/mg and 4.0 mg/mL as well as 64.1 U/mg and 6.0 mg/mL against corn cob and Birchwood xylan, respectively. The activity of <em>Bo</em>ExXyl43A increased by 48 % by addition of 10 mM Ca<sup>2+</sup> ions, while 1 mM EDTA or 1 mM EGTA decreased its activity by 100 % or 42.5 %, respectively, highlighting its calcium-ion dependence. Thin-layer chromatography (TLC) analysis of <em>Bo</em>ExXyl43A hydrolysates of Birchwood and Beechwood xylan as well as that of various xylooligosaccharides (DP2-DP9) from corn cob xylan showed the release of D-xylose, identifying it as an <em>exo</em>-β-1,4-xylosidase/<em>exo</em>-β-1,4-xylanase (EC 3.2.1.-/3.2.1.37). Moreover, the time-dependent TLC analysis of xylobiose hydrolysis showed release of D-xylose units, confirming its β-xylosidase activity. <em>Bo</em>ExXyl43A also exhibited <em>exo</em>-1,4-β-xylosidase activity on Larchwood and Carbosynth xylans. Notably, it released D-xylose from α-L-Araf<sup>2</sup>-xylotriose demonstrating its activity against decorated xylooligosaccharides. <em>Bo</em>ExXyl43A's <em>exo</em>-1,4-β-xylosidase and residual β-xylosidase activity on xylan and xylobiose, respectively, could potentially enhance xylan saccharification efficiency in bioethanol-based refineries. The molecular modeling showed that <em>Bo</em>ExXyl43A has 5-bladed β-propeller structure with a very shallow active-site having −1, +1 and + 2 subsites, which could accommodate three D-xylose units of longer xylan like xylododecaose thus supporting its exoxylosidase activity.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000170/pdfft?md5=85bbdabc14d35daf9f93605f5c740482&pid=1-s2.0-S2590262824000170-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The recombinant 40 kDa BoExXyl43A glycoside hydrolase family 43 (GH43) from bacterium Bacteroides ovatus exhibited highest specific activity (U/mg) against corn cob xylan (136.8), followed by Beechwood xylan (81.1), Carbosynth xylan (69.3), 4-O-D-methylglucuronoxylan (61.4) and Birchwood xylan (59.9). BoExXyl43A demonstrated optimal performance at 37 °C and pH 7.6 with Vmax and Km of 141.8 U/mg and 4.0 mg/mL as well as 64.1 U/mg and 6.0 mg/mL against corn cob and Birchwood xylan, respectively. The activity of BoExXyl43A increased by 48 % by addition of 10 mM Ca2+ ions, while 1 mM EDTA or 1 mM EGTA decreased its activity by 100 % or 42.5 %, respectively, highlighting its calcium-ion dependence. Thin-layer chromatography (TLC) analysis of BoExXyl43A hydrolysates of Birchwood and Beechwood xylan as well as that of various xylooligosaccharides (DP2-DP9) from corn cob xylan showed the release of D-xylose, identifying it as an exo-β-1,4-xylosidase/exo-β-1,4-xylanase (EC 3.2.1.-/3.2.1.37). Moreover, the time-dependent TLC analysis of xylobiose hydrolysis showed release of D-xylose units, confirming its β-xylosidase activity. BoExXyl43A also exhibited exo-1,4-β-xylosidase activity on Larchwood and Carbosynth xylans. Notably, it released D-xylose from α-L-Araf2-xylotriose demonstrating its activity against decorated xylooligosaccharides. BoExXyl43A's exo-1,4-β-xylosidase and residual β-xylosidase activity on xylan and xylobiose, respectively, could potentially enhance xylan saccharification efficiency in bioethanol-based refineries. The molecular modeling showed that BoExXyl43A has 5-bladed β-propeller structure with a very shallow active-site having −1, +1 and + 2 subsites, which could accommodate three D-xylose units of longer xylan like xylododecaose thus supporting its exoxylosidase activity.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.