Reassigning the role of a mesophilic xylan hydrolysing family GH43 β-xylosidase from Bacteroides ovatus, BoExXyl43A as exo-β-1,4-xylosidase

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2024-01-01 DOI:10.1016/j.crbiot.2024.100191
Parmeshwar Vitthal Gavande , Shyam Ji , Vânia Cardoso , Carlos M.G.A. Fontes , Arun Goyal
{"title":"Reassigning the role of a mesophilic xylan hydrolysing family GH43 β-xylosidase from Bacteroides ovatus, BoExXyl43A as exo-β-1,4-xylosidase","authors":"Parmeshwar Vitthal Gavande ,&nbsp;Shyam Ji ,&nbsp;Vânia Cardoso ,&nbsp;Carlos M.G.A. Fontes ,&nbsp;Arun Goyal","doi":"10.1016/j.crbiot.2024.100191","DOIUrl":null,"url":null,"abstract":"<div><p>The recombinant 40 kDa <em>Bo</em>ExXyl43A glycoside hydrolase family 43 (GH43) from bacterium <em>Bacteroides ovatus</em> exhibited highest specific activity (U/mg) against corn cob xylan (136.8), followed by Beechwood xylan (81.1), Carbosynth xylan (69.3), 4-<em>O</em>-D-methylglucuronoxylan (61.4) and Birchwood xylan (59.9). <em>Bo</em>ExXyl43A demonstrated optimal performance at 37 °C and pH 7.6 with V<sub>max</sub> and K<sub>m</sub> of 141.8 U/mg and 4.0 mg/mL as well as 64.1 U/mg and 6.0 mg/mL against corn cob and Birchwood xylan, respectively. The activity of <em>Bo</em>ExXyl43A increased by 48 % by addition of 10 mM Ca<sup>2+</sup> ions, while 1 mM EDTA or 1 mM EGTA decreased its activity by 100 % or 42.5 %, respectively, highlighting its calcium-ion dependence. Thin-layer chromatography (TLC) analysis of <em>Bo</em>ExXyl43A hydrolysates of Birchwood and Beechwood xylan as well as that of various xylooligosaccharides (DP2-DP9) from corn cob xylan showed the release of D-xylose, identifying it as an <em>exo</em>-β-1,4-xylosidase/<em>exo</em>-β-1,4-xylanase (EC 3.2.1.-/3.2.1.37). Moreover, the time-dependent TLC analysis of xylobiose hydrolysis showed release of D-xylose units, confirming its β-xylosidase activity. <em>Bo</em>ExXyl43A also exhibited <em>exo</em>-1,4-β-xylosidase activity on Larchwood and Carbosynth xylans. Notably, it released D-xylose from α-L-Araf<sup>2</sup>-xylotriose demonstrating its activity against decorated xylooligosaccharides. <em>Bo</em>ExXyl43A's <em>exo</em>-1,4-β-xylosidase and residual β-xylosidase activity on xylan and xylobiose, respectively, could potentially enhance xylan saccharification efficiency in bioethanol-based refineries. The molecular modeling showed that <em>Bo</em>ExXyl43A has 5-bladed β-propeller structure with a very shallow active-site having −1, +1 and + 2 subsites, which could accommodate three D-xylose units of longer xylan like xylododecaose thus supporting its exoxylosidase activity.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100191"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000170/pdfft?md5=85bbdabc14d35daf9f93605f5c740482&pid=1-s2.0-S2590262824000170-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The recombinant 40 kDa BoExXyl43A glycoside hydrolase family 43 (GH43) from bacterium Bacteroides ovatus exhibited highest specific activity (U/mg) against corn cob xylan (136.8), followed by Beechwood xylan (81.1), Carbosynth xylan (69.3), 4-O-D-methylglucuronoxylan (61.4) and Birchwood xylan (59.9). BoExXyl43A demonstrated optimal performance at 37 °C and pH 7.6 with Vmax and Km of 141.8 U/mg and 4.0 mg/mL as well as 64.1 U/mg and 6.0 mg/mL against corn cob and Birchwood xylan, respectively. The activity of BoExXyl43A increased by 48 % by addition of 10 mM Ca2+ ions, while 1 mM EDTA or 1 mM EGTA decreased its activity by 100 % or 42.5 %, respectively, highlighting its calcium-ion dependence. Thin-layer chromatography (TLC) analysis of BoExXyl43A hydrolysates of Birchwood and Beechwood xylan as well as that of various xylooligosaccharides (DP2-DP9) from corn cob xylan showed the release of D-xylose, identifying it as an exo-β-1,4-xylosidase/exo-β-1,4-xylanase (EC 3.2.1.-/3.2.1.37). Moreover, the time-dependent TLC analysis of xylobiose hydrolysis showed release of D-xylose units, confirming its β-xylosidase activity. BoExXyl43A also exhibited exo-1,4-β-xylosidase activity on Larchwood and Carbosynth xylans. Notably, it released D-xylose from α-L-Araf2-xylotriose demonstrating its activity against decorated xylooligosaccharides. BoExXyl43A's exo-1,4-β-xylosidase and residual β-xylosidase activity on xylan and xylobiose, respectively, could potentially enhance xylan saccharification efficiency in bioethanol-based refineries. The molecular modeling showed that BoExXyl43A has 5-bladed β-propeller structure with a very shallow active-site having −1, +1 and + 2 subsites, which could accommodate three D-xylose units of longer xylan like xylododecaose thus supporting its exoxylosidase activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将卵形芽孢杆菌中嗜中性木聚糖水解家族 GH43 β-木糖苷酶 BoExXyl43A 的作用重新指定为外-β-1,4-木糖苷酶
来自卵形芽孢杆菌(Bacteroides ovatus)的重组 40 kDa BoExXyl43A 糖苷水解酶家族 43(GH43)对玉米芯木聚糖(136.8)表现出最高的特异性活性(U/mg),其次是榉木木聚糖(81.1)、Carbosynth 木聚糖(69.3)、4-O-D-甲基葡萄糖醛酸聚糖(61.4)和桦木木聚糖(59.9)。BoExXyl43A 在 37 °C 和 pH 7.6 条件下表现出最佳性能,对玉米芯和桦木木聚糖的 Vmax 和 Km 分别为 141.8 U/mg 和 4.0 mg/mL,以及 64.1 U/mg 和 6.0 mg/mL。加入 10 mM Ca2+ 离子后,BoExXyl43A 的活性提高了 48%,而 1 mM EDTA 或 1 mM EGTA 则使其活性分别降低了 100% 或 42.5%,这突出表明了其对钙离子的依赖性。对桦木和榉木木聚糖的 BoExXyl43A 水解产物以及玉米芯木聚糖的各种木寡糖(DP2-DP9)的薄层色谱(TLC)分析表明,D-木糖被释放出来,从而确定它是一种外-β-1,4-木糖苷酶/外-β-1,4-木聚糖酶(EC 3.2.1.-/3.2.1.37)。此外,木糖水解的时间依赖性 TLC 分析显示出 D-木糖单元的释放,这证实了它的β-木糖苷酶活性。BoExXyl43A 对落叶松木糖和卡博辛木糖也具有外向-1,4-β-木糖苷酶活性。值得注意的是,它能从α-L-Araf2-木三糖中释放出 D-木糖,这表明它对装饰木寡糖具有活性。BoExXyl43A 的外向-1,4-β-木糖苷酶和残余β-木糖苷酶分别对木糖和木糖具有活性,这可能会提高生物乙醇精炼厂中木糖的糖化效率。分子建模结果表明,BoExXyl43A 具有 5 片 β-螺旋桨结构,其活性位点非常浅,有-1、+1 和 + 2 个子位点,可容纳较长木聚糖(如十二烷基木糖)的三个 D-木糖单元,从而支持其外切木糖苷酶活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Gut health improvement by locally isolated probiotics and histomorphometric analysis in Wistar rats Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations Importance of substrate type and its constituents on overall performance of microbial fuel cells Curcumol inhibits hepatocellular carcinoma proliferation through miRNA-124/STAT3 pathway: Network pharmacology and experimental validation A systematic review on Indian Acacia species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1