Ming Cai, Jiwei Liu, Xian Zhang, Qihua Ma, Dazhong Wang, Geoffrey I. N. Waterhouse, Baozhong Sun
{"title":"Mechanical Stability of Carbon/Ramie Fiber Hybrid Composites Under Hygrothermal Aging","authors":"Ming Cai, Jiwei Liu, Xian Zhang, Qihua Ma, Dazhong Wang, Geoffrey I. N. Waterhouse, Baozhong Sun","doi":"10.1007/s10443-024-10211-6","DOIUrl":null,"url":null,"abstract":"<p>Hybrid composites containing carbon fibers and ramie fibers in an epoxy polymer matrix were prepared (denoted as CRFRP), after which the composites were immersed in distilled water at three different temperatures (20, 40, and 60 °C) for a period up to 2 months. Water absorption tests and static (tensile and flexural) and dynamic (low-velocity impact) mechanical tests were then conducted on the hygrothermally-treated composites to explore their hydrothermal aging mechanism. Results show that water uptake by CRFRP composites was enhanced by increasing the hygrothermal treatment temperature or aging time, with the water uptake obeying a Fickian diffusion model. Hygrothermal aging decreased the tensile strength, tensile modulus, flexural strength and flexural modulus of the CRFRP composites, though enhanced the impact absorption energy since the ramie fibers had greater plasticity and deformability after aging. Based on the experimental findings, a plausible mechanism was developed for the hydrothermal aging of the hybrid composites. Importantly, CRFRP composites were lighter than carbon fiber-reinforced composites (CFRP), whilst offering similar all-round performance, suggesting CRFRP composites may be useful in applications where CFRP composites have traditionally been used. </p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"80 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10211-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid composites containing carbon fibers and ramie fibers in an epoxy polymer matrix were prepared (denoted as CRFRP), after which the composites were immersed in distilled water at three different temperatures (20, 40, and 60 °C) for a period up to 2 months. Water absorption tests and static (tensile and flexural) and dynamic (low-velocity impact) mechanical tests were then conducted on the hygrothermally-treated composites to explore their hydrothermal aging mechanism. Results show that water uptake by CRFRP composites was enhanced by increasing the hygrothermal treatment temperature or aging time, with the water uptake obeying a Fickian diffusion model. Hygrothermal aging decreased the tensile strength, tensile modulus, flexural strength and flexural modulus of the CRFRP composites, though enhanced the impact absorption energy since the ramie fibers had greater plasticity and deformability after aging. Based on the experimental findings, a plausible mechanism was developed for the hydrothermal aging of the hybrid composites. Importantly, CRFRP composites were lighter than carbon fiber-reinforced composites (CFRP), whilst offering similar all-round performance, suggesting CRFRP composites may be useful in applications where CFRP composites have traditionally been used.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.