Hamideh Vakilifard, Hossein Shahbazi, Andre C. Liberati, Rakesh B. Nair Saraswathy, Rogerio S. Lima, Martin D. Pugh, Christian Moreau
{"title":"High Entropy Oxides as Promising Materials for Thermal Barrier Topcoats: A Review","authors":"Hamideh Vakilifard, Hossein Shahbazi, Andre C. Liberati, Rakesh B. Nair Saraswathy, Rogerio S. Lima, Martin D. Pugh, Christian Moreau","doi":"10.1007/s11666-024-01744-0","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-layered thermal barrier coatings (TBCs) are deposited on gas turbine metallic components to protect them against high temperatures, oxidation, and corrosion. However, TBCs have limited working temperatures and lifetimes due to their material properties. Several approaches are tested to increase TBC topcoats' phase stability and properties. Increasing entropy to stabilize phases is a concept introduced in 2004 and required decreasing the Gibbs free energy. Many high entropy ceramics are developed for structural and functional applications, and different types of high entropy oxides (HEOs) are promising TBC ceramics due to their unique characteristics. HEOs are single-phase solid solutions that contain five or more cations, usually a mixture of transition metals and rare-earth elements. Due to the cocktail effect, the final material has a different behavior from its constituents, making it a viable method to improve the properties of traditional materials. Generally, high entropy materials are characterized by three additional phenomena: sluggish diffusion, severe lattice distortion, and high entropy. A review of possible improvements in the lifetime of TBC topcoats using different HEOs in terms of their composition, properties, and stability is presented here. Different HEOs are then examined, and various thermophysical properties, high-temperature stability, and sintering resistance are discussed.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 2-3","pages":"447 - 470"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01744-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-layered thermal barrier coatings (TBCs) are deposited on gas turbine metallic components to protect them against high temperatures, oxidation, and corrosion. However, TBCs have limited working temperatures and lifetimes due to their material properties. Several approaches are tested to increase TBC topcoats' phase stability and properties. Increasing entropy to stabilize phases is a concept introduced in 2004 and required decreasing the Gibbs free energy. Many high entropy ceramics are developed for structural and functional applications, and different types of high entropy oxides (HEOs) are promising TBC ceramics due to their unique characteristics. HEOs are single-phase solid solutions that contain five or more cations, usually a mixture of transition metals and rare-earth elements. Due to the cocktail effect, the final material has a different behavior from its constituents, making it a viable method to improve the properties of traditional materials. Generally, high entropy materials are characterized by three additional phenomena: sluggish diffusion, severe lattice distortion, and high entropy. A review of possible improvements in the lifetime of TBC topcoats using different HEOs in terms of their composition, properties, and stability is presented here. Different HEOs are then examined, and various thermophysical properties, high-temperature stability, and sintering resistance are discussed.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.