Efficient and high‐resolution surface‐wave dispersive energy imaging using a proposed spatial smoothing propagation method

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Near Surface Geophysics Pub Date : 2024-03-04 DOI:10.1002/nsg.12291
Tao He, Suping Peng, Henggao Geng
{"title":"Efficient and high‐resolution surface‐wave dispersive energy imaging using a proposed spatial smoothing propagation method","authors":"Tao He, Suping Peng, Henggao Geng","doi":"10.1002/nsg.12291","DOIUrl":null,"url":null,"abstract":"Surface‐wave information from seismic data can be used for near‐surface analysis, static computation and noise suppression. The multichannel analysis of surface waves method is a useful approach for obtaining the shear wave velocity of the near surface; however, rapidly generating an image of dispersive energy in the presence of coherent noise is a challenge. In this study, we propose the imaging of the dispersive energy of the Rayleigh wave using a spatial smoothing propagation method. In this method, forward and backward spatial smoothing algorithms were used to restore the rank of the covariance matrix in strong coherent noise. Subsequently, an image of the dispersive energy was rapidly generated by the propagation method using a linear operation equivalent to the eigenvalue decomposition. The proposed method was evaluated using both synthetic and field data. The results showed that the method was easy to use and has higher resolution representation, efficiency and noise robustness compared with conventional methods.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"130 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12291","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface‐wave information from seismic data can be used for near‐surface analysis, static computation and noise suppression. The multichannel analysis of surface waves method is a useful approach for obtaining the shear wave velocity of the near surface; however, rapidly generating an image of dispersive energy in the presence of coherent noise is a challenge. In this study, we propose the imaging of the dispersive energy of the Rayleigh wave using a spatial smoothing propagation method. In this method, forward and backward spatial smoothing algorithms were used to restore the rank of the covariance matrix in strong coherent noise. Subsequently, an image of the dispersive energy was rapidly generated by the propagation method using a linear operation equivalent to the eigenvalue decomposition. The proposed method was evaluated using both synthetic and field data. The results showed that the method was easy to use and has higher resolution representation, efficiency and noise robustness compared with conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用拟议的空间平滑传播方法实现高效、高分辨率面波色散能量成像
地震数据中的面波信息可用于近地表分析、静力计算和噪声抑制。多道面波分析方法是获取近地表剪切波速度的有效方法;然而,在存在相干噪声的情况下快速生成色散能量图像是一项挑战。在本研究中,我们提出了利用空间平滑传播方法对雷利波的色散能量进行成像。在这种方法中,使用了前向和后向空间平滑算法来恢复强相干噪声中协方差矩阵的秩。随后,利用相当于特征值分解的线性运算,通过传播方法快速生成色散能量图像。利用合成数据和现场数据对所提出的方法进行了评估。结果表明,与传统方法相比,该方法易于使用,具有更高的分辨率、效率和噪声鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Near Surface Geophysics
Near Surface Geophysics 地学-地球化学与地球物理
CiteScore
3.60
自引率
12.50%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.
期刊最新文献
High‐resolution surface‐wave‐constrained mapping of sparse dynamic cone penetrometer tests Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen A fine‐tuning workflow for automatic first‐break picking with deep learning Experimental and numerical analysis of dielectric polarization effects in near‐surface earth materials in the 100 Hz–10 MHz frequency range: First interpretation paths Bayesian inversion and uncertainty analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1