{"title":"A class of graphs of zero Turán density in a hypercube","authors":"Maria Axenovich","doi":"10.1017/s0963548324000063","DOIUrl":null,"url":null,"abstract":"<p>For a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> and a hypercube <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{ex}(Q_n, H)$</span></span></img></span></span> is the largest number of edges in an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span>-free subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>. If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lim _{n \\rightarrow \\infty } \\textrm{ex}(Q_n, H)/|E(Q_n)| \\gt 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{ex}(Q_n, H)$</span></span></img></span></span> and even identifying whether <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> has a positive or zero Turán density remains a widely open question for general <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span>. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a graph $H$ and a hypercube $Q_n$, $\textrm{ex}(Q_n, H)$ is the largest number of edges in an $H$-free subgraph of $Q_n$. If $\lim _{n \rightarrow \infty } \textrm{ex}(Q_n, H)/|E(Q_n)| \gt 0$, $H$ is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining $\textrm{ex}(Q_n, H)$ and even identifying whether $H$ has a positive or zero Turán density remains a widely open question for general $H$. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.