Yiwen Wang, Aijun Gong, Lina Qiu, Yuzhen Bai, Yang Liu, Ge Gao, Weiyu Zhao
{"title":"Application of diglycolamide extractant in rare-earth extraction","authors":"Yiwen Wang, Aijun Gong, Lina Qiu, Yuzhen Bai, Yang Liu, Ge Gao, Weiyu Zhao","doi":"10.1071/ch23188","DOIUrl":null,"url":null,"abstract":"<p>Diglycolamide (DGA) extractant is a kind of rare-earth extractant with promising applications that has the advantages of high extraction capacity, ease of synthesis, good thermal stability and good radiation stability. It is a green extractant that contains only four elements, C, H, O and N, and produces no residue after incineration. The properties of DGAs containing branched <i>N</i>,<i>N</i>′-alkyl substituents have been much studied in recent years, and it has been shown that branched side chains lead to better separation. The introduction of structurally rigid elements in DGA provides new possibilities for separation of rare earth elements (REEs). Owing to the tiny differences in the chemical properties of adjacent REES, the simple use of DGA extractant cannot meet all separation requirements, and a masking agent is added to the aqueous phase to improve the separation by coextraction to meet the requirements of different processes. This review presents the structural analysis of the complexes and crystals of diglycolamide extractants with rare-earth ions through different characterization means, and the effects of different structural extractants, solvents, nitric acid and phase modifiers on extraction behavior are reviewed. This review pays special attention to the effect of the side chain structure of diglycolamide on extraction behavior, which provides a theoretical basis and guiding direction for the field of separation of the REEs by diglycolamide extractants.</p>","PeriodicalId":8575,"journal":{"name":"Australian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1071/ch23188","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diglycolamide (DGA) extractant is a kind of rare-earth extractant with promising applications that has the advantages of high extraction capacity, ease of synthesis, good thermal stability and good radiation stability. It is a green extractant that contains only four elements, C, H, O and N, and produces no residue after incineration. The properties of DGAs containing branched N,N′-alkyl substituents have been much studied in recent years, and it has been shown that branched side chains lead to better separation. The introduction of structurally rigid elements in DGA provides new possibilities for separation of rare earth elements (REEs). Owing to the tiny differences in the chemical properties of adjacent REES, the simple use of DGA extractant cannot meet all separation requirements, and a masking agent is added to the aqueous phase to improve the separation by coextraction to meet the requirements of different processes. This review presents the structural analysis of the complexes and crystals of diglycolamide extractants with rare-earth ions through different characterization means, and the effects of different structural extractants, solvents, nitric acid and phase modifiers on extraction behavior are reviewed. This review pays special attention to the effect of the side chain structure of diglycolamide on extraction behavior, which provides a theoretical basis and guiding direction for the field of separation of the REEs by diglycolamide extractants.
期刊介绍:
Australian Journal of Chemistry - an International Journal for Chemical Science publishes research papers from all fields of chemical science. Papers that are multidisciplinary or address new or emerging areas of chemistry are particularly encouraged. Thus, the scope is dynamic. It includes (but is not limited to) synthesis, structure, new materials, macromolecules and polymers, supramolecular chemistry, analytical and environmental chemistry, natural products, biological and medicinal chemistry, nanotechnology, and surface chemistry.
Australian Journal of Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.