Data-Centric Artificial Intelligence

IF 7.9 3区 管理学 Q1 Computer Science Business & Information Systems Engineering Pub Date : 2024-03-05 DOI:10.1007/s12599-024-00857-8
Johannes Jakubik, Michael Vössing, Niklas Kühl, Jannis Walk, Gerhard Satzger
{"title":"Data-Centric Artificial Intelligence","authors":"Johannes Jakubik, Michael Vössing, Niklas Kühl, Jannis Walk, Gerhard Satzger","doi":"10.1007/s12599-024-00857-8","DOIUrl":null,"url":null,"abstract":"<p>Data-centric artificial intelligence (data-centric AI) represents an emerging paradigm that emphasizes the importance of enhancing data systematically and at scale to build effective and efficient AI-based systems. The novel paradigm complements recent model-centric AI, which focuses on improving the performance of AI-based systems based on changes in the model using a fixed set of data. The objective of this article is to introduce practitioners and researchers from the field of Business and Information Systems Engineering (BISE) to data-centric AI. The paper defines relevant terms, provides key characteristics to contrast the paradigm of data-centric AI with the model-centric one, and introduces a framework to illustrate the different dimensions of data-centric AI. In addition, an overview of available tools for data-centric AI is presented and this novel paradigm is differenciated from related concepts. Finally, the paper discusses the longer-term implications of data-centric AI for the BISE community.</p>","PeriodicalId":55296,"journal":{"name":"Business & Information Systems Engineering","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12599-024-00857-8","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Data-centric artificial intelligence (data-centric AI) represents an emerging paradigm that emphasizes the importance of enhancing data systematically and at scale to build effective and efficient AI-based systems. The novel paradigm complements recent model-centric AI, which focuses on improving the performance of AI-based systems based on changes in the model using a fixed set of data. The objective of this article is to introduce practitioners and researchers from the field of Business and Information Systems Engineering (BISE) to data-centric AI. The paper defines relevant terms, provides key characteristics to contrast the paradigm of data-centric AI with the model-centric one, and introduces a framework to illustrate the different dimensions of data-centric AI. In addition, an overview of available tools for data-centric AI is presented and this novel paradigm is differenciated from related concepts. Finally, the paper discusses the longer-term implications of data-centric AI for the BISE community.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以数据为中心的人工智能
以数据为中心的人工智能(Data-centric AI)代表了一种新兴范式,它强调系统地、大规模地增强数据的重要性,以建立有效、高效的人工智能系统。这种新范式是对近期以模型为中心的人工智能的补充,后者侧重于根据使用固定数据集的模型的变化来提高基于人工智能的系统的性能。本文旨在向商业与信息系统工程(BISE)领域的从业人员和研究人员介绍以数据为中心的人工智能。本文定义了相关术语,提供了以数据为中心的人工智能范式与以模型为中心的人工智能范式对比的关键特征,并介绍了一个框架来说明以数据为中心的人工智能的不同维度。此外,本文还概述了以数据为中心的人工智能的可用工具,并将这种新范式与相关概念进行了区分。最后,本文讨论了以数据为中心的人工智能对 BISE 社区的长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering 工程技术-计算机:信息系统
CiteScore
11.30
自引率
7.60%
发文量
44
审稿时长
3.0 months
期刊介绍: BISE (Business & Information Systems Engineering) is an international scholarly journal that undergoes double-blind peer review. It publishes scientific research on the effective and efficient design and utilization of information systems by individuals, groups, enterprises, and society to enhance social welfare. Information systems are viewed as socio-technical systems involving tasks, people, and technology. Research in the journal addresses issues in the analysis, design, implementation, and management of information systems.
期刊最新文献
Rethinking Openness in Data Platforms: The Impact of Data Artifact Characteristics on Platform Openness Unfolding IoT Adoption: A Status Quo Bias Perspective Managing Dynamics in and Around Business Processes Data Sovereignty in Inter-organizational Information Systems Unveiling Use Cases for Human Resource Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1