[Advances in molecular mechanisms and therapeutic strategies of white matter injury after intracerebral hemorrhage].

Q3 Medicine 生理学报 Pub Date : 2024-02-25
Xiao-Gang Wang, Ya-Bin Lu, Qian Li
{"title":"[Advances in molecular mechanisms and therapeutic strategies of white matter injury after intracerebral hemorrhage].","authors":"Xiao-Gang Wang, Ya-Bin Lu, Qian Li","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is the most common subtype of stroke with high disability and high mortality rates. Due to the hypertension with arteriosclerosis, hemopathy and cerebrovascular amyloidosis, the influx of blood from ruptured vessels into the brain destroys the cerebral parenchyma and results in dysfunction of central nervous system because of hematoma compression and a series of toxic metabolites. The cerebral parenchyma consists of gray and white matter. The white matter consists of myelinated axons and oligodendrocytes, whereas the gray matter consists of neuronal cell bodies and dendrites. Currently, most of studies have explored the mechanisms of gray matter injury. But researches of white matter injury (WMI) are still in their infancy, which may be partially responsible for the failure of treatments with neuroprotectants targeting degenerating neuronal cells. In recent years, researchers have progressively identified pathophysiological mechanisms of WMI after ICH including mass effect, neuroinflammation and oxidative stress, but information on the molecular mechanisms of WMI and its effective treatment remains limited. In this paper, we will describe the structure and function of white matter, summarize pathology of WMI and focus on the research advances in the molecular mechanisms and therapeutic strategies of WMI after ICH.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"76 1","pages":"59-76"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Intracerebral hemorrhage (ICH) is the most common subtype of stroke with high disability and high mortality rates. Due to the hypertension with arteriosclerosis, hemopathy and cerebrovascular amyloidosis, the influx of blood from ruptured vessels into the brain destroys the cerebral parenchyma and results in dysfunction of central nervous system because of hematoma compression and a series of toxic metabolites. The cerebral parenchyma consists of gray and white matter. The white matter consists of myelinated axons and oligodendrocytes, whereas the gray matter consists of neuronal cell bodies and dendrites. Currently, most of studies have explored the mechanisms of gray matter injury. But researches of white matter injury (WMI) are still in their infancy, which may be partially responsible for the failure of treatments with neuroprotectants targeting degenerating neuronal cells. In recent years, researchers have progressively identified pathophysiological mechanisms of WMI after ICH including mass effect, neuroinflammation and oxidative stress, but information on the molecular mechanisms of WMI and its effective treatment remains limited. In this paper, we will describe the structure and function of white matter, summarize pathology of WMI and focus on the research advances in the molecular mechanisms and therapeutic strategies of WMI after ICH.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[脑出血后白质损伤的分子机制和治疗策略研究进展]。
脑出血(ICH)是中风最常见的亚型,致残率和死亡率都很高。由于高血压伴有动脉硬化、血液病和脑血管淀粉样变性,血液从破裂的血管涌入大脑,破坏了脑实质,血肿压迫和一系列毒性代谢产物导致中枢神经系统功能障碍。脑实质由灰质和白质组成。白质由髓鞘轴突和少突胶质细胞组成,而灰质由神经元细胞体和树突组成。目前,大多数研究都在探索灰质损伤的机制。但对白质损伤(WMI)的研究仍处于起步阶段,这可能是针对退化神经元细胞的神经保护剂治疗失败的部分原因。近年来,研究人员逐渐发现了 ICH 后白质损伤的病理生理机制,包括肿块效应、神经炎症和氧化应激,但有关白质损伤的分子机制及其有效治疗的信息仍然有限。本文将描述白质的结构和功能,总结 WMI 的病理,并重点介绍 ICH 后 WMI 的分子机制和治疗策略的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生理学报
生理学报 Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
期刊最新文献
[Exogenous EPO protects HT22 cells from intermittent hypoxia-induced injury by activating JAK2-STAT5 signaling pathway]. [m6A RNA methylation is a potential biological target for neuropathic pain]. [Research progress in the regulation of functional homeostasis of adipose tissue by exosomal miRNA]. [Research progress of human induced pluripotent stem cells in the establishment and application of dilated cardiomyopathy disease model]. [Research progress of the effects of high-intensity interval training on excess post-exercise oxygen consumption in human].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1