MIB Guides: Measuring the Immunoreactivity of Radioimmunoconjugates.

IF 3 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Molecular Imaging and Biology Pub Date : 2024-04-01 Epub Date: 2024-03-06 DOI:10.1007/s11307-024-01898-x
Samantha Delaney, Camilla Grimaldi, Jacob L Houghton, Brian M Zeglis
{"title":"MIB Guides: Measuring the Immunoreactivity of Radioimmunoconjugates.","authors":"Samantha Delaney, Camilla Grimaldi, Jacob L Houghton, Brian M Zeglis","doi":"10.1007/s11307-024-01898-x","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoglobulins, both full-length antibodies and smaller antibody fragments, have long been regarded as effective platforms for diagnostic and therapeutic radiopharmaceuticals. The construction of radiolabeled immunoglobulins (i.e., radioimmunoconjugates) requires the manipulation of the biomolecule through the attachment of a radiohalogen or the bioconjugation of a chelator that is subsequently used to coordinate a radiometal. Both synthetic approaches have historically relied upon the stochastic modification of amino acids within the immunoglobulin, a process which poses a risk to the structural and functional integrity of the biomolecule itself. Not surprisingly, radioimmunoconjugates with impaired antigen binding capacity will inevitably exhibit suboptimal in vivo performance. As a result, the biological characterization of any newly synthesized radioimmunoconjugate must include an assessment of whether it has retained its ability to bind its antigen. Herein, we provide straightforward and concise protocols for three assays that can be used to determine the immunoreactivity of a radioimmunoconjugate: (1) a cell-based linear extrapolation assay; (2) a cell-based antigen saturation assay; and (3) a resin- or bead-based assay. In addition, we will provide a critical analysis of the relative merits of each assay, an examination of the inherent limitations of immunoreactivity assays in general, and a discussion of other approaches that may be used to interrogate the biological behavior of radioimmunoconjugates.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-024-01898-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Immunoglobulins, both full-length antibodies and smaller antibody fragments, have long been regarded as effective platforms for diagnostic and therapeutic radiopharmaceuticals. The construction of radiolabeled immunoglobulins (i.e., radioimmunoconjugates) requires the manipulation of the biomolecule through the attachment of a radiohalogen or the bioconjugation of a chelator that is subsequently used to coordinate a radiometal. Both synthetic approaches have historically relied upon the stochastic modification of amino acids within the immunoglobulin, a process which poses a risk to the structural and functional integrity of the biomolecule itself. Not surprisingly, radioimmunoconjugates with impaired antigen binding capacity will inevitably exhibit suboptimal in vivo performance. As a result, the biological characterization of any newly synthesized radioimmunoconjugate must include an assessment of whether it has retained its ability to bind its antigen. Herein, we provide straightforward and concise protocols for three assays that can be used to determine the immunoreactivity of a radioimmunoconjugate: (1) a cell-based linear extrapolation assay; (2) a cell-based antigen saturation assay; and (3) a resin- or bead-based assay. In addition, we will provide a critical analysis of the relative merits of each assay, an examination of the inherent limitations of immunoreactivity assays in general, and a discussion of other approaches that may be used to interrogate the biological behavior of radioimmunoconjugates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIB 指南:测量放射免疫结合剂的免疫活性。
长期以来,免疫球蛋白(包括全长抗体和较小的抗体片段)一直被视为诊断和治疗放射性药物的有效平台。构建放射性标记的免疫球蛋白(即放射免疫结合物)需要通过附着放射性卤素或生物结合螯合剂来操纵生物大分子,然后再用螯合剂与放射性金属配位。这两种合成方法历来都依赖于对免疫球蛋白内的氨基酸进行随机修饰,这一过程会对生物大分子本身的结构和功能完整性造成风险。毫不奇怪,抗原结合能力受损的放射免疫结合剂将不可避免地表现出不理想的体内性能。因此,对任何新合成的放射免疫结合剂进行生物学鉴定时,都必须评估其是否保持了与抗原结合的能力。在此,我们提供了三种可用于确定放射免疫轭合物免疫活性的简明实验方案:(1) 基于细胞的线性外推实验;(2) 基于细胞的抗原饱和实验;(3) 基于树脂或珠子的实验。此外,我们还将对每种检测方法的相对优点进行批判性分析,研究一般免疫反应性检测方法的固有局限性,并讨论可用于检测放射免疫结合物生物学行为的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
3.20%
发文量
95
审稿时长
3 months
期刊介绍: Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures. Some areas that are covered are: Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes. The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets. Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display. Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging. Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics. Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations. Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.
期刊最新文献
In Vivo Detection of Lymph Nodes Metastasis of ESCC Using CXCR4-Targeted Tracer [64Cu]Cu-NOTA-CP01. Differentiation Between Responders and Non-Responders to Antibiotic Treatment in Mice Using 18F-Fluorodeoxysorbitol/PET. 2023 World Molecular Imaging Congress Program. Utility of Quantitative Assessment of Tc-99m-diethylenetriamine-penta-acetic acid-galactosyl Human Serum Albumin SPECT/CT in the Identification of Severe Liver Fibrosis: Its Complementary Diagnostic Value with Other Liver Function Indices. Prospective Comparison of [18F]FDG and [18F]AIF-FAPI-74 PET/CT in the Evaluation of Potentially Resectable Pancreatic Ductal Adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1