{"title":"BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations.","authors":"Tomoyuki Kakizume, Kentaro Takeda, Masataka Taguri, Satoshi Morita","doi":"10.1177/09622802241236936","DOIUrl":null,"url":null,"abstract":"<p><p>One of the primary objectives of a dose-finding trial for novel anti-cancer agent combination therapies, such as molecular targeted agents and immune-oncology therapies, is to identify optimal dose combinations that are tolerable and therapeutically beneficial for subjects in subsequent clinical trials. The goal differs from that of a dose-finding trial for traditional cytotoxic agents, in which the goal is to determine the maximum tolerated dose combinations. This paper proposes the new design, named 'BOIN-ETC' design, to identify optimal dose combinations based on both efficacy and toxicity outcomes using the waterfall approach. The BOIN-ETC design is model-assisted, so it is expected to be robust, and straightforward to implement in actual oncology dose-finding trials. These characteristics are quite valuable from a practical perspective. Simulation studies show that the BOIN-ETC design has advantages compared with the other approaches in the percentage of correct optimal dose combination selection and the average number of patients allocated to the optimal dose combinations across various realistic settings.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"716-727"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241236936","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
One of the primary objectives of a dose-finding trial for novel anti-cancer agent combination therapies, such as molecular targeted agents and immune-oncology therapies, is to identify optimal dose combinations that are tolerable and therapeutically beneficial for subjects in subsequent clinical trials. The goal differs from that of a dose-finding trial for traditional cytotoxic agents, in which the goal is to determine the maximum tolerated dose combinations. This paper proposes the new design, named 'BOIN-ETC' design, to identify optimal dose combinations based on both efficacy and toxicity outcomes using the waterfall approach. The BOIN-ETC design is model-assisted, so it is expected to be robust, and straightforward to implement in actual oncology dose-finding trials. These characteristics are quite valuable from a practical perspective. Simulation studies show that the BOIN-ETC design has advantages compared with the other approaches in the percentage of correct optimal dose combination selection and the average number of patients allocated to the optimal dose combinations across various realistic settings.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)