Pub Date : 2025-03-31DOI: 10.1177/09622802251316971
Jonathan W Bartlett, Camila Olarte Parra, Emily Granger, Ruth H Keogh, Erik W van Zwet, Rhian M Daniel
G-formula is a popular approach for estimating the effects of time-varying treatments or exposures from longitudinal data. G-formula is typically implemented using Monte-Carlo simulation, with non-parametric bootstrapping used for inference. In longitudinal data settings missing data are a common issue, which are often handled using multiple imputation, but it is unclear how G-formula and multiple imputation should be combined. We show how G-formula can be implemented using Bayesian multiple imputation methods for synthetic data, and that by doing so, we can impute missing data and simulate the counterfactuals of interest within a single coherent approach. We describe how this can be achieved using standard multiple imputation software and explore its performance using a simulation study and an application from cystic fibrosis.
{"title":"G-formula with multiple imputation for causal inference with incomplete data.","authors":"Jonathan W Bartlett, Camila Olarte Parra, Emily Granger, Ruth H Keogh, Erik W van Zwet, Rhian M Daniel","doi":"10.1177/09622802251316971","DOIUrl":"https://doi.org/10.1177/09622802251316971","url":null,"abstract":"<p><p>G-formula is a popular approach for estimating the effects of time-varying treatments or exposures from longitudinal data. G-formula is typically implemented using Monte-Carlo simulation, with non-parametric bootstrapping used for inference. In longitudinal data settings missing data are a common issue, which are often handled using multiple imputation, but it is unclear how G-formula and multiple imputation should be combined. We show how G-formula can be implemented using Bayesian multiple imputation methods for synthetic data, and that by doing so, we can impute missing data and simulate the counterfactuals of interest within a single coherent approach. We describe how this can be achieved using standard multiple imputation software and explore its performance using a simulation study and an application from cystic fibrosis.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251316971"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251322987
Duncan T Wilson, Andrew Hall, Julia M Brown, Rebecca Ea Walwyn
Pilot trials are often conducted in advance of definitive trials to assess their feasibility and to inform their design. Although pilot trials typically collect primary endpoint data, preliminary tests of effectiveness have been discouraged given their typically low power. Power could be increased at the cost of a higher type I error rate, but there is little methodological guidance on how to determine the optimal balance between these operating characteristics. We consider a Bayesian decision-theoretic approach to this problem, introducing a utility function and defining an optimal pilot and definitive trial programme as that which maximises expected utility. We base utility on changes in average primary outcome, the cost of sampling, treatment costs, and the decision-maker's attitude to risk. We apply this approach to re-design OK-Diabetes, a pilot trial of a complex intervention with a continuous primary outcome with known standard deviation. We then examine how optimal programme characteristics vary with the parameters of the utility function. We find that the conventional approach of not testing for effectiveness in pilot trials can be considerably sub-optimal.
试点试验通常在确定性试验之前进行,以评估其可行性并为其设计提供依据。尽管先导试验通常会收集主要终点数据,但由于其功率通常较低,因此不鼓励对有效性进行初步测试。虽然可以通过提高 I 类错误率来提高试验的有效性,但如何在这些操作特征之间取得最佳平衡,目前还没有什么方法论指导。我们考虑采用贝叶斯决策理论方法来解决这一问题,引入效用函数,并将最佳试点和最终试验方案定义为预期效用最大化的方案。我们将平均主要结果的变化、取样成本、治疗成本以及决策者对风险的态度作为效用的基础。我们运用这种方法重新设计了 OK-糖尿病试验,这是一项复杂干预的试点试验,其主要结果是连续的,标准偏差已知。然后,我们研究了最佳方案特征如何随效用函数参数的变化而变化。我们发现,在试点试验中不测试有效性的传统方法可能在很大程度上不是最佳方法。
{"title":"Optimising error rates in programmes of pilot and definitive trials using Bayesian statistical decision theory.","authors":"Duncan T Wilson, Andrew Hall, Julia M Brown, Rebecca Ea Walwyn","doi":"10.1177/09622802251322987","DOIUrl":"https://doi.org/10.1177/09622802251322987","url":null,"abstract":"<p><p>Pilot trials are often conducted in advance of definitive trials to assess their feasibility and to inform their design. Although pilot trials typically collect primary endpoint data, preliminary tests of effectiveness have been discouraged given their typically low power. Power could be increased at the cost of a higher type I error rate, but there is little methodological guidance on how to determine the optimal balance between these operating characteristics. We consider a Bayesian decision-theoretic approach to this problem, introducing a utility function and defining an optimal pilot and definitive trial programme as that which maximises expected utility. We base utility on changes in average primary outcome, the cost of sampling, treatment costs, and the decision-maker's attitude to risk. We apply this approach to re-design OK-Diabetes, a pilot trial of a complex intervention with a continuous primary outcome with known standard deviation. We then examine how optimal programme characteristics vary with the parameters of the utility function. We find that the conventional approach of not testing for effectiveness in pilot trials can be considerably sub-optimal.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251322987"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251327689
Jiahui Xin, Wei Ma
In the context of precision medicine, covariate-adjusted response-adaptive (CARA) randomization has garnered much attention from both academia and industry due to its benefits in providing ethical and tailored treatment assignments based on patients' profiles while still preserving favorable statistical properties. Recent years have seen substantial progress in inference for various adaptive experimental designs. In particular, research has focused on two important perspectives: how to obtain robust inference in the presence of model misspecification, and what the smallest variance, i.e., the efficiency bound, an estimator can achieve. Notably, Armstrong (2022) derived the asymptotic efficiency bound for any randomization procedure that assigns treatments depending on covariates and accrued responses, thus including CARA, among others. However, to the best of our knowledge, no existing literature has addressed whether and how this bound can be achieved under CARA. In this paper, by connecting two strands of adaptive randomization literature, namely robust inference and efficiency bound, we provide a definitive answer in an important practical scenario where only discrete covariates are observed and used for stratification. We consider a special type of CARA, i.e., a stratified version of doubly-adaptive biased coin design and prove that the stratified difference-in-means estimator achieves Armstrong (2022)'s efficiency bound, with possible ethical constraints on treatment assignments. Our work provides new insights and demonstrates the potential for more research on CARA designs that maximize efficiency while adhering to ethical considerations. Future studies could explore achieving the asymptotic efficiency bound for CARA with continuous covariates, which remains an open question.
在精准医疗的背景下,协变量调整反应自适应(CARA)随机化在根据患者特征提供合乎道德的定制治疗分配的同时,还能保持良好的统计特性,因此受到学术界和工业界的广泛关注。近年来,各种自适应实验设计的推断取得了长足的进步。特别是,研究主要集中在两个重要方面:如何在存在模型错误规范的情况下获得稳健推断,以及估计器所能达到的最小方差(即效率边界)。值得注意的是,Armstrong(2022 年)推导出了任何根据协变量和累积反应分配处理的随机化程序的渐近效率边界,因此包括 CARA 等。然而,据我们所知,目前还没有文献探讨过在 CARA 条件下是否以及如何实现这一约束。在本文中,我们通过将自适应随机化文献的两个分支(即稳健推断和效率约束)联系起来,在一个重要的实际场景中提供了一个明确的答案,在这个场景中,只有离散协变量被观测到并用于分层。我们考虑了一种特殊类型的 CARA,即双重自适应偏置硬币设计的分层版本,并证明了分层均值差估计器达到了 Armstrong (2022) 的效率约束,同时对处理分配可能存在道德约束。我们的工作提供了新的见解,并展示了对既能最大限度提高效率又能遵守伦理考虑的 CARA 设计进行更多研究的潜力。未来的研究可以探索如何实现具有连续协变量的 CARA 的渐近效率约束,这仍然是一个未决问题。
{"title":"On the achievability of efficiency bounds for covariate-adjusted response-adaptive randomization.","authors":"Jiahui Xin, Wei Ma","doi":"10.1177/09622802251327689","DOIUrl":"https://doi.org/10.1177/09622802251327689","url":null,"abstract":"<p><p>In the context of precision medicine, covariate-adjusted response-adaptive (CARA) randomization has garnered much attention from both academia and industry due to its benefits in providing ethical and tailored treatment assignments based on patients' profiles while still preserving favorable statistical properties. Recent years have seen substantial progress in inference for various adaptive experimental designs. In particular, research has focused on two important perspectives: how to obtain robust inference in the presence of model misspecification, and what the smallest variance, i.e., the efficiency bound, an estimator can achieve. Notably, Armstrong (2022) derived the asymptotic efficiency bound for any randomization procedure that assigns treatments depending on covariates and accrued responses, thus including CARA, among others. However, to the best of our knowledge, no existing literature has addressed whether and how this bound can be achieved under CARA. In this paper, by connecting two strands of adaptive randomization literature, namely robust inference and efficiency bound, we provide a definitive answer in an important practical scenario where only discrete covariates are observed and used for stratification. We consider a special type of CARA, i.e., a stratified version of doubly-adaptive biased coin design and prove that the stratified difference-in-means estimator achieves Armstrong (2022)'s efficiency bound, with possible ethical constraints on treatment assignments. Our work provides new insights and demonstrates the potential for more research on CARA designs that maximize efficiency while adhering to ethical considerations. Future studies could explore achieving the asymptotic efficiency bound for CARA with continuous covariates, which remains an open question.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251327689"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251322990
Baoshan Zhang, Yuan Wu
This study addresses a critical gap in the design of clinical trials that use grouped sequential designs for one-sample or paired ordinal categorical outcomes. Single-arm experiments, such as those using the modified Rankin Scale in stroke trials, underscore the necessity of our work. We present a novel method for applying the Wilcoxon signed-rank test to grouped sequences in these contexts. Our approach provides a practical and theoretical framework for assessing treatment effects, detailing variance formulas and demonstrating the asymptotic normality of the U-statistic. Through simulation studies and real data analysis, we validate the empirical Type I error rates and power. Additionally, we include a comprehensive flowchart to guide researchers in determining the required sample size to achieve specified power levels while controlling Type I error rates, thereby enhancing the design process of sequential trials.
本研究弥补了临床试验设计中的一个重要空白,即对单样本或配对序数分类结果采用分组序列设计。单臂试验(如在中风试验中使用修正的 Rankin 量表)强调了我们工作的必要性。我们提出了一种将 Wilcoxon 符号秩检验应用于这些情况下分组序列的新方法。我们的方法为评估治疗效果提供了一个实用的理论框架,详细说明了方差公式,并证明了 U 统计量的渐近正态性。通过模拟研究和真实数据分析,我们验证了经验 I 类错误率和功率。此外,我们还提供了一个全面的流程图,指导研究人员确定所需的样本量,以便在控制 I 类错误率的同时达到指定的功率水平,从而改进顺序试验的设计过程。
{"title":"Sequential design for paired ordinal categorical outcome.","authors":"Baoshan Zhang, Yuan Wu","doi":"10.1177/09622802251322990","DOIUrl":"https://doi.org/10.1177/09622802251322990","url":null,"abstract":"<p><p>This study addresses a critical gap in the design of clinical trials that use grouped sequential designs for one-sample or paired ordinal categorical outcomes. Single-arm experiments, such as those using the modified Rankin Scale in stroke trials, underscore the necessity of our work. We present a novel method for applying the Wilcoxon signed-rank test to grouped sequences in these contexts. Our approach provides a practical and theoretical framework for assessing treatment effects, detailing variance formulas and demonstrating the asymptotic normality of the U-statistic. Through simulation studies and real data analysis, we validate the empirical Type I error rates and power. Additionally, we include a comprehensive flowchart to guide researchers in determining the required sample size to achieve specified power levels while controlling Type I error rates, thereby enhancing the design process of sequential trials.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251322990"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251327686
Yi-Cheng Tai, Weijing Wang, Martin T Wells
In this article, we develop nonparametric inference methods for comparing survival data across two samples, beneficial for clinical trials of novel cancer therapies where long-term survival is critical. These therapies, including immunotherapies and other advanced treatments, aim to establish durable effects. They often exhibit distinct survival patterns such as crossing or delayed separation and potentially leveling-off at the tails of survival curves, violating the proportional hazards assumption and rendering the hazard ratio inappropriate for measuring treatment effects. Our methodology uses the mixture cure framework to separately analyze cure rates of long-term survivors and the survival functions of susceptible individuals. We evaluated a nonparametric estimator for the susceptible survival function in a one-sample setting. Under sufficient follow-up, it is expressed as a location-scale-shift variant of the Kaplan-Meier estimator. It retains desirable features of the Kaplan-Meier estimator, including inverse-probability-censoring weighting, product-limit estimation, self-consistency, and nonparametric efficiency. Under insufficient follow-up, it can be adapted by incorporating a suitable cure rate estimator. In the two-sample setting, in addition to using the difference in cure rates to measure long-term effects, we propose a graphical estimand to compare relative treatment effects on susceptible subgroups. This process, inspired by Kendall's tau, compares the order of survival times among susceptible individuals. Large-sample properties of the proposed methods are derived for inference and their finite-sample properties are evaluated through simulations. The methodology is applied to analyze digitized data from the CheckMate 067 trial.
{"title":"Estimand-based inference in the presence of long-term survivors.","authors":"Yi-Cheng Tai, Weijing Wang, Martin T Wells","doi":"10.1177/09622802251327686","DOIUrl":"https://doi.org/10.1177/09622802251327686","url":null,"abstract":"<p><p>In this article, we develop nonparametric inference methods for comparing survival data across two samples, beneficial for clinical trials of novel cancer therapies where long-term survival is critical. These therapies, including immunotherapies and other advanced treatments, aim to establish durable effects. They often exhibit distinct survival patterns such as crossing or delayed separation and potentially leveling-off at the tails of survival curves, violating the proportional hazards assumption and rendering the hazard ratio inappropriate for measuring treatment effects. Our methodology uses the mixture cure framework to separately analyze cure rates of long-term survivors and the survival functions of susceptible individuals. We evaluated a nonparametric estimator for the susceptible survival function in a one-sample setting. Under sufficient follow-up, it is expressed as a location-scale-shift variant of the Kaplan-Meier estimator. It retains desirable features of the Kaplan-Meier estimator, including inverse-probability-censoring weighting, product-limit estimation, self-consistency, and nonparametric efficiency. Under insufficient follow-up, it can be adapted by incorporating a suitable cure rate estimator. In the two-sample setting, in addition to using the difference in cure rates to measure long-term effects, we propose a graphical estimand to compare relative treatment effects on susceptible subgroups. This process, inspired by Kendall's tau, compares the order of survival times among susceptible individuals. Large-sample properties of the proposed methods are derived for inference and their finite-sample properties are evaluated through simulations. The methodology is applied to analyze digitized data from the CheckMate 067 trial.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251327686"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251329768
Marco Molinari, Magne Thoresen
Simultaneously performing variable selection and inference in high-dimensional regression models is an open challenge in statistics and machine learning. The increasing availability of vast amounts of variables requires the adoption of specific statistical procedures to accurately select the most important predictors in a high-dimensional space, while controlling the false discovery rate (FDR) associated with the variable selection procedure. In this paper, we propose the joint adoption of the Mirror Statistic approach to FDR control, coupled with outcome randomisation to maximise the statistical power of the variable selection procedure, measured through the true positive rate. Through extensive simulations, we show how our proposed strategy allows us to combine the benefits of the two techniques. The Mirror Statistic is a flexible method to control FDR, which only requires mild model assumptions, but requires two sets of independent regression coefficient estimates, usually obtained after splitting the original dataset. Outcome randomisation is an alternative to data splitting that allows to generate two independent outcomes, which can then be used to estimate the coefficients that go into the construction of the Mirror Statistic. The combination of these two approaches provides increased testing power in a number of scenarios, such as highly correlated covariates and high percentages of active variables. Moreover, it is scalable to very high-dimensional problems, since the algorithm has a low memory footprint and only requires a single run on the full dataset, as opposed to iterative alternatives such as multiple data splitting.
{"title":"A computationally efficient approach to false discovery rate control and power maximisation via randomisation and mirror statistic.","authors":"Marco Molinari, Magne Thoresen","doi":"10.1177/09622802251329768","DOIUrl":"https://doi.org/10.1177/09622802251329768","url":null,"abstract":"<p><p>Simultaneously performing variable selection and inference in high-dimensional regression models is an open challenge in statistics and machine learning. The increasing availability of vast amounts of variables requires the adoption of specific statistical procedures to accurately select the most important predictors in a high-dimensional space, while controlling the false discovery rate (FDR) associated with the variable selection procedure. In this paper, we propose the joint adoption of the Mirror Statistic approach to FDR control, coupled with outcome randomisation to maximise the statistical power of the variable selection procedure, measured through the true positive rate. Through extensive simulations, we show how our proposed strategy allows us to combine the benefits of the two techniques. The Mirror Statistic is a flexible method to control FDR, which only requires mild model assumptions, but requires two sets of independent regression coefficient estimates, usually obtained after splitting the original dataset. Outcome randomisation is an alternative to data splitting that allows to generate two independent outcomes, which can then be used to estimate the coefficients that go into the construction of the Mirror Statistic. The combination of these two approaches provides increased testing power in a number of scenarios, such as highly correlated covariates and high percentages of active variables. Moreover, it is scalable to very high-dimensional problems, since the algorithm has a low memory footprint and only requires a single run on the full dataset, as opposed to iterative alternatives such as multiple data splitting.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251329768"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802241313281
A James O'Malley, Yifan Zhao, Carly Bobak, Chuanling Qin, Erika L Moen, Daniel N Rockmore
There is growing use of shared-patient physician networks in health services research and practice, but minimal study of the consequences of decisions made in constructing them. To address this gap, we surveyed physician employees of a National Physician Organization (NPO) on their peer physician relationships. Using the physicians' survey nominations as ground truths, we evaluated the diagnostic accuracy of shared-patient edge-weights and the optimal construction of physician networks from sequences of patient-physician encounters. To further improve diagnostic accuracy, we optimized network construction with respect to the within-dyad difference and summation of edge-strength (two orthogonal measures), optimally combining them to form a final edge-weight. To achieve these goals, we develop statistical procedures to quantify the extent that directionality and other features of referral paths yield edge-weights with improved diagnostic properties. We also develop network models of the survey nominations incorporating directed (edge) and undirected (dyadic) shared-patient network measures as edge and dyad attributes to demonstrate that the measurement of the network as a whole is improved. Finally, we estimate the association of the physicians' centrality in the NPO shared-patient network (a sociocentric feature that cannot be evaluated for the partially-measured survey-based network) with their beliefs regarding physician peer-influence.
{"title":"Methodology for supervised optimization of the construction of physician shared-patient networks.","authors":"A James O'Malley, Yifan Zhao, Carly Bobak, Chuanling Qin, Erika L Moen, Daniel N Rockmore","doi":"10.1177/09622802241313281","DOIUrl":"https://doi.org/10.1177/09622802241313281","url":null,"abstract":"<p><p>There is growing use of shared-patient physician networks in health services research and practice, but minimal study of the consequences of decisions made in constructing them. To address this gap, we surveyed physician employees of a National Physician Organization (NPO) on their peer physician relationships. Using the physicians' survey nominations as ground truths, we evaluated the diagnostic accuracy of shared-patient edge-weights and the optimal construction of physician networks from sequences of patient-physician encounters. To further improve diagnostic accuracy, we optimized network construction with respect to the within-dyad difference and summation of edge-strength (two orthogonal measures), optimally combining them to form a final edge-weight. To achieve these goals, we develop statistical procedures to quantify the extent that directionality and other features of referral paths yield edge-weights with improved diagnostic properties. We also develop network models of the survey nominations incorporating directed (edge) and undirected (dyadic) shared-patient network measures as edge and dyad attributes to demonstrate that the measurement of the network as a whole is improved. Finally, we estimate the association of the physicians' centrality in the NPO shared-patient network (a sociocentric feature that cannot be evaluated for the partially-measured survey-based network) with their beliefs regarding physician peer-influence.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241313281"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251327690
Alessandro Baldi Antognini, Sara Cecconi, Rosamarie Frieri, Maroussa Zagoraiou
The rapidly developing field of personalized medicine is giving the opportunity to treat patients with a specific regimen according to their individual demographic, biological, or genomic characteristics, known also as biomarkers. While binary biomarkers simplify subgroup selection, challenges arise in the presence of continuous ones, which are often categorized based on data-driven quantiles. In the context of binary response trials for treatment comparisons, this paper proposes a method for determining the optimal cutoff of a continuous predictive biomarker to discriminate between sensitive and insensitive patients, based on their relative risk. We derived the optimal design to estimate such a cutoff, which requires a set of equality constraints that involve the unknown model parameters and the patients' biomarker values and are not directly attainable. To implement the optimal design, a novel covariate-adjusted response-adaptive randomization is introduced, aimed at sequentially minimizing the Euclidean distance between the current allocation and the optimum. An extensive simulation study shows the performance of the proposed approach in terms of estimation efficiency and variance of the estimated cutoff. Finally, we show the potential severe ethical impact of adopting the data-dependent median to identify the subpopulations.
{"title":"Biomarker-driven optimal designs for patient enrollment restriction.","authors":"Alessandro Baldi Antognini, Sara Cecconi, Rosamarie Frieri, Maroussa Zagoraiou","doi":"10.1177/09622802251327690","DOIUrl":"https://doi.org/10.1177/09622802251327690","url":null,"abstract":"<p><p>The rapidly developing field of personalized medicine is giving the opportunity to treat patients with a specific regimen according to their individual demographic, biological, or genomic characteristics, known also as biomarkers. While binary biomarkers simplify subgroup selection, challenges arise in the presence of continuous ones, which are often categorized based on data-driven quantiles. In the context of binary response trials for treatment comparisons, this paper proposes a method for determining the optimal cutoff of a continuous predictive biomarker to discriminate between sensitive and insensitive patients, based on their relative risk. We derived the optimal design to estimate such a cutoff, which requires a set of equality constraints that involve the unknown model parameters and the patients' biomarker values and are not directly attainable. To implement the optimal design, a novel covariate-adjusted response-adaptive randomization is introduced, aimed at sequentially minimizing the Euclidean distance between the current allocation and the optimum. An extensive simulation study shows the performance of the proposed approach in terms of estimation efficiency and variance of the estimated cutoff. Finally, we show the potential severe ethical impact of adopting the data-dependent median to identify the subpopulations.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251327690"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251327687
Fatih Kızılaslan, David Michael Swanson, Valeria Vitelli
A novel mixture cure frailty model is introduced for handling censored survival data. Mixture cure models are preferable when the existence of a cured fraction among patients can be assumed. However, such models are heavily underexplored: frailty structures within cure models remain largely undeveloped, and furthermore, most existing methods do not work for high-dimensional datasets, when the number of predictors is significantly larger than the number of observations. In this study, we introduce a novel extension of the Weibull mixture cure model that incorporates a frailty component, employed to model an underlying latent population heterogeneity with respect to the outcome risk. Additionally, high-dimensional covariates are integrated into both the cure rate and survival part of the model, providing a comprehensive approach to employ the model in the context of high-dimensional omics data. We also perform variable selection via an adaptive elastic-net penalization, and propose a novel approach to inference using the expectation-maximization (EM) algorithm. Extensive simulation studies are conducted across various scenarios to demonstrate the performance of the model, and results indicate that our proposed method outperforms competitor models. We apply the novel approach to analyze RNAseq gene expression data from bulk breast cancer patients included in The Cancer Genome Atlas (TCGA) database. A set of prognostic biomarkers is then derived from selected genes, and subsequently validated via both functional enrichment analysis and comparison to the existing biological literature. Finally, a prognostic risk score index based on the identified biomarkers is proposed and validated by exploring the patients' survival.
{"title":"A Weibull mixture cure frailty model for high-dimensional covariates.","authors":"Fatih Kızılaslan, David Michael Swanson, Valeria Vitelli","doi":"10.1177/09622802251327687","DOIUrl":"https://doi.org/10.1177/09622802251327687","url":null,"abstract":"<p><p>A novel mixture cure frailty model is introduced for handling censored survival data. Mixture cure models are preferable when the existence of a cured fraction among patients can be assumed. However, such models are heavily underexplored: frailty structures within cure models remain largely undeveloped, and furthermore, most existing methods do not work for high-dimensional datasets, when the number of predictors is significantly larger than the number of observations. In this study, we introduce a novel extension of the Weibull mixture cure model that incorporates a frailty component, employed to model an underlying latent population heterogeneity with respect to the outcome risk. Additionally, high-dimensional covariates are integrated into both the cure rate and survival part of the model, providing a comprehensive approach to employ the model in the context of high-dimensional omics data. We also perform variable selection via an adaptive elastic-net penalization, and propose a novel approach to inference using the expectation-maximization (EM) algorithm. Extensive simulation studies are conducted across various scenarios to demonstrate the performance of the model, and results indicate that our proposed method outperforms competitor models. We apply the novel approach to analyze RNAseq gene expression data from bulk breast cancer patients included in The Cancer Genome Atlas (TCGA) database. A set of prognostic biomarkers is then derived from selected genes, and subsequently validated via both functional enrichment analysis and comparison to the existing biological literature. Finally, a prognostic risk score index based on the identified biomarkers is proposed and validated by exploring the patients' survival.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251327687"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1177/09622802251327691
Sydney Porter, Anne Eaton, Thomas A Murray
Recently, targeted and immunotherapy cancer treatments have motivated dose-finding based on efficacy-toxicity trade-offs rather than toxicity alone. The EffTox and utility-based Bayesian optimal interval (U-BOIN) dose-finding designs were developed in response to this need, but may be sensitive to elicited subjective design parameters that reflect the trade-off between efficacy and toxicity. To ease elicitation and reduce subjectivity, we propose dose desirability criteria that only depend on a preferential ordering of the joint efficacy-toxicity outcomes. We propose two novel order-based criteria and compare them with utility-based and contour-based criteria when paired with the design framework and probability models of EffTox and U-BOIN. The proposed dose desirability criteria simplify implementation and improve robustness to the elicited subjective design parameters and perform similarly in simulation studies to the established EffTox and U-BOIN designs when the ordering of the joint outcomes is equivalent. We also propose an alternative dose admissibility criteria based on the joint efficacy and toxicity profile of a dose rather than its marginal toxicity and efficacy profile. We argue that this alternative joint criterion is more consistent with defining dose desirability in terms of efficacy-toxicity trade-offs than the standard marginal admissibility criteria. The proposed methods enhance the usability and robustness of dose-finding designs that account for efficacy-toxicity trade-offs to identify the optimal biological dose.
{"title":"Dose selection criteria to identify the optimal dose based on ranked efficacy-toxicity outcomes without reliance on clinical utilities.","authors":"Sydney Porter, Anne Eaton, Thomas A Murray","doi":"10.1177/09622802251327691","DOIUrl":"https://doi.org/10.1177/09622802251327691","url":null,"abstract":"<p><p>Recently, targeted and immunotherapy cancer treatments have motivated dose-finding based on efficacy-toxicity trade-offs rather than toxicity alone. The EffTox and utility-based Bayesian optimal interval (U-BOIN) dose-finding designs were developed in response to this need, but may be sensitive to elicited subjective design parameters that reflect the trade-off between efficacy and toxicity. To ease elicitation and reduce subjectivity, we propose dose desirability criteria that only depend on a preferential ordering of the joint efficacy-toxicity outcomes. We propose two novel order-based criteria and compare them with utility-based and contour-based criteria when paired with the design framework and probability models of EffTox and U-BOIN. The proposed dose desirability criteria simplify implementation and improve robustness to the elicited subjective design parameters and perform similarly in simulation studies to the established EffTox and U-BOIN designs when the ordering of the joint outcomes is equivalent. We also propose an alternative dose admissibility criteria based on the joint efficacy and toxicity profile of a dose rather than its marginal toxicity and efficacy profile. We argue that this alternative joint criterion is more consistent with defining dose desirability in terms of efficacy-toxicity trade-offs than the standard marginal admissibility criteria. The proposed methods enhance the usability and robustness of dose-finding designs that account for efficacy-toxicity trade-offs to identify the optimal biological dose.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251327691"},"PeriodicalIF":1.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}