{"title":"Nodal Heterogeneity can Induce Ghost Triadic Effects in Relational Event Models.","authors":"Rūta Juozaitienė, Ernst C Wit","doi":"10.1007/s11336-024-09952-x","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal network data is often encoded as time-stamped interaction events between senders and receivers, such as co-authoring scientific articles or communication via email. A number of relational event frameworks have been proposed to address specific issues raised by complex temporal dependencies. These models attempt to quantify how individual behaviour, endogenous and exogenous factors, as well as interactions with other individuals modify the network dynamics over time. It is often of interest to determine whether changes in the network can be attributed to endogenous mechanisms reflecting natural relational tendencies, such as reciprocity or triadic effects. The propensity to form or receive ties can also, at least partially, be related to actor attributes. Nodal heterogeneity in the network is often modelled by including actor-specific or dyadic covariates. However, comprehensively capturing all personality traits is difficult in practice, if not impossible. A failure to account for heterogeneity may confound the substantive effect of key variables of interest. This work shows that failing to account for node level sender and receiver effects can induce ghost triadic effects. We propose a random-effect extension of the relational event model to deal with these problems. We show that it is often effective over more traditional approaches, such as in-degree and out-degree statistics. These results that the violation of the hierarchy principle due to insufficient information about nodal heterogeneity can be resolved by including random effects in the relational event model as a standard.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09952-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal network data is often encoded as time-stamped interaction events between senders and receivers, such as co-authoring scientific articles or communication via email. A number of relational event frameworks have been proposed to address specific issues raised by complex temporal dependencies. These models attempt to quantify how individual behaviour, endogenous and exogenous factors, as well as interactions with other individuals modify the network dynamics over time. It is often of interest to determine whether changes in the network can be attributed to endogenous mechanisms reflecting natural relational tendencies, such as reciprocity or triadic effects. The propensity to form or receive ties can also, at least partially, be related to actor attributes. Nodal heterogeneity in the network is often modelled by including actor-specific or dyadic covariates. However, comprehensively capturing all personality traits is difficult in practice, if not impossible. A failure to account for heterogeneity may confound the substantive effect of key variables of interest. This work shows that failing to account for node level sender and receiver effects can induce ghost triadic effects. We propose a random-effect extension of the relational event model to deal with these problems. We show that it is often effective over more traditional approaches, such as in-degree and out-degree statistics. These results that the violation of the hierarchy principle due to insufficient information about nodal heterogeneity can be resolved by including random effects in the relational event model as a standard.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.