S. Chintalwad , S. Krishnamurthy , S. Morris , Lap Van Dao , B. Ramakrishna
{"title":"Simulation studies of γ-ray radiation in laser-plasma interactions with structured targets","authors":"S. Chintalwad , S. Krishnamurthy , S. Morris , Lap Van Dao , B. Ramakrishna","doi":"10.1016/j.fpp.2024.100038","DOIUrl":null,"url":null,"abstract":"<div><p>We studied the <em>γ</em>-ray emission from laser interactions with structured targets of Al and Au. Bremsstrahlung and Non-linear Compton Scattering (NCS) emission are considered for the <em>γ</em>-ray emission using the open source 2-D PIC code EPOCH. Different shapes of the target generated additional hot electrons, which helps to enhance the photon energy in individual cases. The enhancement of photon energy is due to the target's shape and the hot electrons. Hot electron generation and their dynamics, like refluxing behavior, are crucial phenomena in thin targets. This study uses four different shapes of Al and Au targets. The relative strength of emissions from both bremsstrahlung and NCS are compared. The shape of the target enhances the <em>γ</em>-ray energy, electron energy, and emitted photon number and improves the electron beam divergence. The effect of each target shape on hot electrons refluxing behavior and the role of the electric and magnetic fields are discussed in detail.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100038"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000037/pdfft?md5=4718a01bdaf817de4d5a53c5c6198ca5&pid=1-s2.0-S2772828524000037-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We studied the γ-ray emission from laser interactions with structured targets of Al and Au. Bremsstrahlung and Non-linear Compton Scattering (NCS) emission are considered for the γ-ray emission using the open source 2-D PIC code EPOCH. Different shapes of the target generated additional hot electrons, which helps to enhance the photon energy in individual cases. The enhancement of photon energy is due to the target's shape and the hot electrons. Hot electron generation and their dynamics, like refluxing behavior, are crucial phenomena in thin targets. This study uses four different shapes of Al and Au targets. The relative strength of emissions from both bremsstrahlung and NCS are compared. The shape of the target enhances the γ-ray energy, electron energy, and emitted photon number and improves the electron beam divergence. The effect of each target shape on hot electrons refluxing behavior and the role of the electric and magnetic fields are discussed in detail.