Jyotsna Dei , Soumyadeb Bhattacharyya , Koustuv Ghosh , Subrata Sarkar , Souvik Pal , Subhankar Mukherjee , Dhruba Jyoti Sarkar , Alokesh Ghosh , Rajib Bandyopadhyay , Basanta Kumar Das , Bijay Kumar Behera
{"title":"Development of field portable potentiostat using electrochemical aptasensing technology for detection of Cr(VI) in aquatic environment","authors":"Jyotsna Dei , Soumyadeb Bhattacharyya , Koustuv Ghosh , Subrata Sarkar , Souvik Pal , Subhankar Mukherjee , Dhruba Jyoti Sarkar , Alokesh Ghosh , Rajib Bandyopadhyay , Basanta Kumar Das , Bijay Kumar Behera","doi":"10.1016/j.crbiot.2024.100193","DOIUrl":null,"url":null,"abstract":"<div><p>Hexavalent chromium or Cr(VI) is highly toxic for humans as it causes high oxidative reactions inside cells, leading to diseases like chronic ulcers and damage to the kidneys, mucous membranes, throat, skin, and respiratory tract. Due to rapid urbanization, Cr(VI) comes into our food chain through unmonitored and uncontrolled application in agriculture fields, refineries, mills, the tanning industry, automobiles, road works, etc. Presently, the standard Cr(VI) detection is done using conventional processes, which, though accurate, has severe drawbacks in on-the-spot rapid detection in the field. Here, we have represented a handheld potentiostat towards trace-level Cr(VI) detection in aquatic environments. A Cr(VI) specific DNA aptamer immobilized screen printed electrode (SPE) has been used as the main biosensor. The device operates on an electronic peak current dumping event through mass deposition in the presence of an aptamer coupled with Cr(VI) onto the working electrode. The working range of the developed prototype is in the range of 0–1000 ppb Cr(VI), where the maximum linearity has been observed in the range of 0–500 ppb with a limit of Detection (LOD) as low as 10 ppb. The device has exhibited an excellent correlation with commercially available electrochemical workstations with a coefficient of 0.972. Moreover, the applicability of the developed device has been validated for 7 different types of water samples. To our knowledge, this is the first-ever reported simplistic resource-limited on-spot aptasensing device for Cr(VI) detection in an aquatic environment.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000194/pdfft?md5=fe1a4ec25f5718704121e5b717e7fe7c&pid=1-s2.0-S2590262824000194-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hexavalent chromium or Cr(VI) is highly toxic for humans as it causes high oxidative reactions inside cells, leading to diseases like chronic ulcers and damage to the kidneys, mucous membranes, throat, skin, and respiratory tract. Due to rapid urbanization, Cr(VI) comes into our food chain through unmonitored and uncontrolled application in agriculture fields, refineries, mills, the tanning industry, automobiles, road works, etc. Presently, the standard Cr(VI) detection is done using conventional processes, which, though accurate, has severe drawbacks in on-the-spot rapid detection in the field. Here, we have represented a handheld potentiostat towards trace-level Cr(VI) detection in aquatic environments. A Cr(VI) specific DNA aptamer immobilized screen printed electrode (SPE) has been used as the main biosensor. The device operates on an electronic peak current dumping event through mass deposition in the presence of an aptamer coupled with Cr(VI) onto the working electrode. The working range of the developed prototype is in the range of 0–1000 ppb Cr(VI), where the maximum linearity has been observed in the range of 0–500 ppb with a limit of Detection (LOD) as low as 10 ppb. The device has exhibited an excellent correlation with commercially available electrochemical workstations with a coefficient of 0.972. Moreover, the applicability of the developed device has been validated for 7 different types of water samples. To our knowledge, this is the first-ever reported simplistic resource-limited on-spot aptasensing device for Cr(VI) detection in an aquatic environment.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.