L. M. Gillespie, P. Kolari, L. Kulmala, S. M. Leitner, M. Pihlatie, S. Zechmeister-Boltenstern, E. Díaz-Pinés
{"title":"Drought effects on soil greenhouse gas fluxes in a boreal and a temperate forest","authors":"L. M. Gillespie, P. Kolari, L. Kulmala, S. M. Leitner, M. Pihlatie, S. Zechmeister-Boltenstern, E. Díaz-Pinés","doi":"10.1007/s10533-024-01126-2","DOIUrl":null,"url":null,"abstract":"<div><p>Changing water regimes (e.g. drought) have unknown long-term consequences on the stability and resilience of soil microorganisms who determine much of the carbon and nitrogen exchange between the biosphere and atmosphere. Shifts in their activity could feedback into ongoing climate change. In this study, we explored soil drought effects on soil greenhouse gas (GHG; CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) fluxes over time in two sites: a boreal, coniferous forest in Finland (Hyytiälä) and a temperate, broadleaf forest in Austria (Rosalia). Topsoil moisture and topsoil temperature data were used to identify soil drought events, defined as when soil moisture is below the soil moisture at the permanent wilting point. Data over multiple years from automated GHG flux chambers installed on the forest floor were then analyzed using generalized additive models (GAM) to study whether GHG fluxes differed before and after drought events and whether there was an overall, multiyear temporal trend. Results showed CO<sub>2</sub> and N<sub>2</sub>O emissions to be more affected by drought and long-term trends at Hyytiälä with increased CO<sub>2</sub> emission and decreased N<sub>2</sub>O emissions both following drought and over the entire measurement period. CH<sub>4</sub> uptake increased at both sites both during non-drought periods and as an overall, multiyear trend and was predominantly affected by soil moisture dynamics. Multiyear trends also suggest an increase in soil temperature in the boreal forest and a decrease in soil moisture in the temperate forest. These findings underline forests as an important sink for CH<sub>4</sub>, possibly with an increasing rate in a future climate.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 2","pages":"155 - 175"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01126-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01126-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Changing water regimes (e.g. drought) have unknown long-term consequences on the stability and resilience of soil microorganisms who determine much of the carbon and nitrogen exchange between the biosphere and atmosphere. Shifts in their activity could feedback into ongoing climate change. In this study, we explored soil drought effects on soil greenhouse gas (GHG; CO2, CH4, N2O) fluxes over time in two sites: a boreal, coniferous forest in Finland (Hyytiälä) and a temperate, broadleaf forest in Austria (Rosalia). Topsoil moisture and topsoil temperature data were used to identify soil drought events, defined as when soil moisture is below the soil moisture at the permanent wilting point. Data over multiple years from automated GHG flux chambers installed on the forest floor were then analyzed using generalized additive models (GAM) to study whether GHG fluxes differed before and after drought events and whether there was an overall, multiyear temporal trend. Results showed CO2 and N2O emissions to be more affected by drought and long-term trends at Hyytiälä with increased CO2 emission and decreased N2O emissions both following drought and over the entire measurement period. CH4 uptake increased at both sites both during non-drought periods and as an overall, multiyear trend and was predominantly affected by soil moisture dynamics. Multiyear trends also suggest an increase in soil temperature in the boreal forest and a decrease in soil moisture in the temperate forest. These findings underline forests as an important sink for CH4, possibly with an increasing rate in a future climate.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.