首页 > 最新文献

Biogeochemistry最新文献

英文 中文
Mercury cycling in the Czech GEOMON network catchments recovering from acid deposition and facing climate change
IF 4 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-24 DOI: 10.1007/s10533-025-01231-w
Tomáš Navrátil, Jan Rohovec, James B. Shanley, Šárka Matoušková, Michal Roll, Tereza Nováková, Pavel Krám, Miroslav Tesař, Oldřich Myška, Filip Oulehle

We used the catchment mass balance approach to investigate mercury (Hg) cycling at the 14 forested GEOMON catchments of the Czech Geological Survey. The temperate forest catchments had variable exposure to historic high sulfur (S) and Hg emissions, and span a range of size and elevation. We monitored monthly Hg inputs (bulk precipitation, throughfall, litterfall) and outputs (stream runoff) during 2020–2022. The catchments spanned a large gradient of historic Hg deposition, but current Hg patterns more closely aligned with catchment factors like local climate, as influenced by elevation, dissolved organic carbon (DOC) concentrations, and geology. The dominant pathway of Hg input was litterfall (averaging 44.5 ± 15.7 µg m−2 yr−1; > 91% of total input). Two surprising findings were that GEOMON had low Hg concentrations and fluxes in general but had the highest litterfall Hg fluxes in Europe, and these increased even further in forested areas that had bark beetle infestations. Gaseous elemental mercury (GEM), measured using passive samplers, was consistently low (1.25 to 1.66 ng m−3) across the 14 catchments. Stream Hg output varied across catchments and averaged 1.5 ± 1.7 µg m−2 yr−1. The average Hg retention rate at the 14 GEOMON catchments, calculated as the fraction of average Hg inputs (throughfall + litterfall) that remained in the catchment and did not run off in streamwater, was 97%. The high catchment Hg retention combined with its strong association with DOC suggests that with climate change intensification of carbon cycling, these catchments will be a Hg source for decades to come.

{"title":"Mercury cycling in the Czech GEOMON network catchments recovering from acid deposition and facing climate change","authors":"Tomáš Navrátil, Jan Rohovec, James B. Shanley, Šárka Matoušková, Michal Roll, Tereza Nováková, Pavel Krám, Miroslav Tesař, Oldřich Myška, Filip Oulehle","doi":"10.1007/s10533-025-01231-w","DOIUrl":"https://doi.org/10.1007/s10533-025-01231-w","url":null,"abstract":"<p>We used the catchment mass balance approach to investigate mercury (Hg) cycling at the 14 forested GEOMON catchments of the Czech Geological Survey. The temperate forest catchments had variable exposure to historic high sulfur (S) and Hg emissions, and span a range of size and elevation. We monitored monthly Hg inputs (bulk precipitation, throughfall, litterfall) and outputs (stream runoff) during 2020–2022. The catchments spanned a large gradient of historic Hg deposition, but current Hg patterns more closely aligned with catchment factors like local climate, as influenced by elevation, dissolved organic carbon (DOC) concentrations, and geology. The dominant pathway of Hg input was litterfall (averaging 44.5 ± 15.7 µg m<sup>−2</sup> yr<sup>−1</sup>; &gt; 91% of total input). Two surprising findings were that GEOMON had low Hg concentrations and fluxes in general but had the highest litterfall Hg fluxes in Europe, and these increased even further in forested areas that had bark beetle infestations. Gaseous elemental mercury (GEM), measured using passive samplers, was consistently low (1.25 to 1.66 ng m<sup>−3</sup>) across the 14 catchments. Stream Hg output varied across catchments and averaged 1.5 ± 1.7 µg m<sup>−2</sup> yr<sup>−1</sup>. The average Hg retention rate at the 14 GEOMON catchments, calculated as the fraction of average Hg inputs (throughfall + litterfall) that remained in the catchment and did not run off in streamwater, was 97%. The high catchment Hg retention combined with its strong association with DOC suggests that with climate change intensification of carbon cycling, these catchments will be a Hg source for decades to come.</p>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"24 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143866930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bulk density calculation methods systematically alter estimates of soil organic carbon stocks in United States forests
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-23 DOI: 10.1007/s10533-025-01235-6
Ashley K. Lang, Melissa A. Pastore, Brian F. Walters, Grant M. Domke

Soils are the largest terrestrial carbon sink on Earth, yet substantial uncertainty in the size and stability of this pool remains. Much of this uncertainty stems from the characterization of bulk density, which is the mass of a soil sample divided by its volume, a key property in the calculation of soil organic carbon (SOC) stocks. We used data from nearly 2900 plots in the United States (U.S.) Nationwide Forest Inventory to quantify SOC stocks in forests with three common methods of calculating soil bulk density. Mean SOC stocks calculated with these methods varied by up to 13 Mg ha−1, a difference equivalent to more than 70 percent of the 2022 economy-wide carbon dioxide emissions in the U.S. when scaled across all forest area. These differences were primarily driven by inconsistent treatment of coarse materials (i.e. rocks and roots) in soil bulk density calculations, which led to an overestimation of SOC content by 32 percent of the mean SOC stock across all U.S. forests. The largest discrepancies were found in soils with high coarse fragment content, which are more common in ecologically sensitive ecosystems like alpine zones and drylands, and in commercially important softwood forest types. Quantifying the size and stability of SOC in the land sector is essential to understanding how this carbon pool may serve as a nature-based solution to climate change. Consistent and transparent methods are necessary when estimating and reporting SOC content and when comparing SOC dynamics across ecological gradients, with disturbance, and over time.

土壤是地球上最大的陆地碳汇,但这一碳库的规模和稳定性仍存在很大的不确定性。这种不确定性很大程度上源于体积密度的表征,即土壤样本的质量除以其体积,这是计算土壤有机碳储量的一个关键属性。我们利用美国全国森林资源清查中近 2900 个地块的数据,采用三种常见的土壤容重计算方法对森林中的 SOC 储量进行了量化。用这些方法计算出的平均 SOC 储量相差高达 13 兆克/公顷-1,按所有森林面积计算,这一差异相当于美国 2022 年全经济二氧化碳排放量的 70% 以上。造成这些差异的主要原因是在计算土壤容重时对粗糙物质(如岩石和树根)的处理不一致,这导致 SOC 含量被高估了 32%,相当于美国所有森林的平均 SOC 储量。差异最大的是粗碎屑含量高的土壤,这种土壤在生态敏感的生态系统(如高寒地带和旱地)以及具有重要商业价值的软木森林类型中更为常见。量化土地部门中 SOC 的规模和稳定性对于了解这一碳库如何作为基于自然的气候变化解决方案至关重要。在估算和报告 SOC 含量时,以及在比较不同生态梯度、不同干扰和不同时期的 SOC 动态时,必须采用一致且透明的方法。
{"title":"Bulk density calculation methods systematically alter estimates of soil organic carbon stocks in United States forests","authors":"Ashley K. Lang,&nbsp;Melissa A. Pastore,&nbsp;Brian F. Walters,&nbsp;Grant M. Domke","doi":"10.1007/s10533-025-01235-6","DOIUrl":"10.1007/s10533-025-01235-6","url":null,"abstract":"<div><p>Soils are the largest terrestrial carbon sink on Earth, yet substantial uncertainty in the size and stability of this pool remains. Much of this uncertainty stems from the characterization of bulk density, which is the mass of a soil sample divided by its volume, a key property in the calculation of soil organic carbon (SOC) stocks. We used data from nearly 2900 plots in the United States (U.S.) Nationwide Forest Inventory to quantify SOC stocks in forests with three common methods of calculating soil bulk density. Mean SOC stocks calculated with these methods varied by up to 13 Mg ha<sup>−1</sup>, a difference equivalent to more than 70 percent of the 2022 economy-wide carbon dioxide emissions in the U.S. when scaled across all forest area. These differences were primarily driven by inconsistent treatment of coarse materials (i.e. rocks and roots) in soil bulk density calculations, which led to an overestimation of SOC content by 32 percent of the mean SOC stock across all U.S. forests. The largest discrepancies were found in soils with high coarse fragment content, which are more common in ecologically sensitive ecosystems like alpine zones and drylands, and in commercially important softwood forest types. Quantifying the size and stability of SOC in the land sector is essential to understanding how this carbon pool may serve as a nature-based solution to climate change. Consistent and transparent methods are necessary when estimating and reporting SOC content and when comparing SOC dynamics across ecological gradients, with disturbance, and over time.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 3","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01235-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143861344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ebullition dominates high methane emissions globally across all lake sizes
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-19 DOI: 10.1007/s10533-025-01233-8
Jonas Stage Sø, Kenneth Thorø Martinsen, Theis Kragh, Kaj Sand-Jensen

Methane is emitted from lakes by diffusion and ebullition. Methane diffusion is constrained by diffusion from sediments to water and water to the atmosphere, as well as oxidation. Methane ebullition from shallow water sediments bypasses these constraints but requires high methane production to form bubbles. We tested if ebullition dominates at high emissions with a Danish dataset and a global dataset comprising 973 measurements. Upper limits of methane diffusion were more constrained than ebullition. During periods of low total emissions, diffusive methane emissions predominated, whereas ebullition prevailed during periods of high emissions. The relative contribution of ebullition changed predictably, being 50% at 1.5–1.6 mmol m−2 d−1 and 75% at 5.1–6.4 mmol m−2 d−1 total methane emission. The probability of ebullitive flux was highly affected by the magnitude of the diffusive flux, and water temperature. Thus, when data was divided into the water temperature intervals ≤10, 10–20, and >20 °C, ebullition occurred in 69, 69 and 95% of the observations, respectively, and emission increased from 0.29, 0.71 to 3.6 mmol m−2 d−1 between the three temperature intervals. Summed across all measurements, ebullition accounted for the majority (75–83%) of total methane emissions. Thus, to attain reliable whole-lake emission and global estimates, many ebullition measurements are required to cover their extensive spatial and temporal variability.

{"title":"Ebullition dominates high methane emissions globally across all lake sizes","authors":"Jonas Stage Sø,&nbsp;Kenneth Thorø Martinsen,&nbsp;Theis Kragh,&nbsp;Kaj Sand-Jensen","doi":"10.1007/s10533-025-01233-8","DOIUrl":"10.1007/s10533-025-01233-8","url":null,"abstract":"<div><p>Methane is emitted from lakes by diffusion and ebullition. Methane diffusion is constrained by diffusion from sediments to water and water to the atmosphere, as well as oxidation. Methane ebullition from shallow water sediments bypasses these constraints but requires high methane production to form bubbles. We tested if ebullition dominates at high emissions with a Danish dataset and a global dataset comprising 973 measurements. Upper limits of methane diffusion were more constrained than ebullition. During periods of low total emissions, diffusive methane emissions predominated, whereas ebullition prevailed during periods of high emissions. The relative contribution of ebullition changed predictably, being 50% at 1.5–1.6 mmol m<sup>−2</sup> d<sup>−1</sup> and 75% at 5.1–6.4 mmol m<sup>−2</sup> d<sup>−1</sup> total methane emission. The probability of ebullitive flux was highly affected by the magnitude of the diffusive flux, and water temperature. Thus, when data was divided into the water temperature intervals ≤10, 10–20, and &gt;20 °C, ebullition occurred in 69, 69 and 95% of the observations, respectively, and emission increased from 0.29, 0.71 to 3.6 mmol m<sup>−2</sup> d<sup>−1</sup> between the three temperature intervals. Summed across all measurements, ebullition accounted for the majority (75–83%) of total methane emissions. Thus, to attain reliable whole-lake emission and global estimates, many ebullition measurements are required to cover their extensive spatial and temporal variability.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 3","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01233-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Irradiance and biofilm age control daytime and nighttime macronutrient cycling in stream mesocosms
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-14 DOI: 10.1007/s10533-025-01227-6
Nergui Sunjidmaa, Clara Mendoza-Lera, Julia Pasqualini, Patrick Fink, Alexander Bartusch, Dietrich Borchardt, Anne Jähkel, Daniel Graeber
{"title":"Correction to: Irradiance and biofilm age control daytime and nighttime macronutrient cycling in stream mesocosms","authors":"Nergui Sunjidmaa,&nbsp;Clara Mendoza-Lera,&nbsp;Julia Pasqualini,&nbsp;Patrick Fink,&nbsp;Alexander Bartusch,&nbsp;Dietrich Borchardt,&nbsp;Anne Jähkel,&nbsp;Daniel Graeber","doi":"10.1007/s10533-025-01227-6","DOIUrl":"10.1007/s10533-025-01227-6","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01227-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controls on the spatial variability of δ13CDIC along the Bransfield Strait during austral summer 布兰斯菲尔德海峡沿岸δ13CDIC空间变化在夏季的控制因素
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-07 DOI: 10.1007/s10533-025-01226-7
Yasmym Schutz de Vincenzi Weirich, Eunice da Costa Machado, Luiz Cotovicz Carlos Jr., Elis Brandão Rocha, Marcelo Costa Muniz, Roberto Meigikos dos Anjos, Carlos Rafael Borges Mendes, Rodrigo Kerr

Bransfield Strait has been identified as a climate hotspot for understanding regional environmental changes with global impact. This study focuses on enhancing the understanding of carbon cycle dynamics and its interactions with hydrographic variables in Bransfield Strait, located on the northern Antarctic Peninsula. The stable carbon isotopes of dissolved inorganic carbon (δ13CDIC) were investigated in the study region during comprehensive sampling in 2023 along the major ocean basins. Bransfield Strait is influenced by two main source water masses: the Circumpolar Deep Water (CDW), which intrudes into the region from the Antarctic Circumpolar Current meander, and Dense Shelf Water (DSW), which is advected by coastal currents from the Weddell Sea continental shelf. The study reveals CDW’s dominant role in 2023, accounting for ~60% of the water mass mixture in the region and limiting the highest contribution of DSW to the deep layer of the central basin. The spatial variation of δ13CDIC signatures showed that biogeochemical processes predominantly shape the δ13CDIC distribution along the water column. Photosynthesis enriched the surface waters with the heavier carbon isotope, with signatures ranging from 2 to 1.5‰, while organic matter remineralization depleted it below the mixed layer (ranging from 0 to − 2‰). Horizontally, δ13CDIC distribution was influenced by the higher contribution of each source water mass. Thermodynamic fractionation contributed to the enrichment of δ13CDIC (~ 1 to 1.5‰) in the CDW layer in Bransfield Strait. Conversely, the predominance of younger and colder DSW exhibited a depletion of δ13CDIC (− 1 to − 2‰). Therefore, δ13CDIC is identified as an additional tracer to provide new insights into the biogeochemical and hydrodynamic processes of Bransfield Strait.

布兰斯菲尔德海峡已被确定为了解具有全球影响的区域环境变化的气候热点。本研究的重点是加深对位于南极半岛北部的布兰斯菲尔德海峡碳循环动力学及其与水文变量相互作用的理解。在 2023 年沿主要海洋盆地进行全面采样期间,对研究区域的溶解无机碳稳定碳同位素(δ13CDIC)进行了调查。布兰斯菲尔德海峡主要受两种源水体的影响:一是南极环极洋流蜿蜒侵入该区域的环极深水(CDW),二是沿岸流从威德尔海大陆架移入的致密陆架水(DSW)。该研究揭示了 2023 年南极环流的主导作用,占该区域混合水体的约 60%,并限制了南极大陆架水对中央海盆深层的最大贡献。δ13CDIC特征的空间变化表明,生物地球化学过程主要决定了δ13CDIC在水体中的分布。光合作用使表层水富含较重的碳同位素,碳同位素特征范围为 2 至 1.5‰,而混合层以下的有机物再矿化过程则使其富集(范围为 0 至 -2‰)。在水平方向上,δ13CDIC 的分布受每种源水质量较高的影响。热动力分馏作用导致布兰斯菲尔德海峡 CDW 层 δ13CDIC 的富集(约 1 至 1.5‰)。相反,较年轻和较冷的 DSW 则显示出 δ13CDIC 的损耗(-1 至 -2‰)。因此,δ13CDIC 被认为是一种新的示踪剂,可为了解布兰斯菲尔德海峡的生物地球化学和水动力过程提供新的视角。
{"title":"Controls on the spatial variability of δ13CDIC along the Bransfield Strait during austral summer","authors":"Yasmym Schutz de Vincenzi Weirich,&nbsp;Eunice da Costa Machado,&nbsp;Luiz Cotovicz Carlos Jr.,&nbsp;Elis Brandão Rocha,&nbsp;Marcelo Costa Muniz,&nbsp;Roberto Meigikos dos Anjos,&nbsp;Carlos Rafael Borges Mendes,&nbsp;Rodrigo Kerr","doi":"10.1007/s10533-025-01226-7","DOIUrl":"10.1007/s10533-025-01226-7","url":null,"abstract":"<div><p>Bransfield Strait has been identified as a climate hotspot for understanding regional environmental changes with global impact. This study focuses on enhancing the understanding of carbon cycle dynamics and its interactions with hydrographic variables in Bransfield Strait, located on the northern Antarctic Peninsula. The stable carbon isotopes of dissolved inorganic carbon (δ<sup>13</sup>C<sub>DIC</sub>) were investigated in the study region during comprehensive sampling in 2023 along the major ocean basins. Bransfield Strait is influenced by two main source water masses: the Circumpolar Deep Water (CDW), which intrudes into the region from the Antarctic Circumpolar Current meander, and Dense Shelf Water (DSW), which is advected by coastal currents from the Weddell Sea continental shelf. The study reveals CDW’s dominant role in 2023, accounting for ~60% of the water mass mixture in the region and limiting the highest contribution of DSW to the deep layer of the central basin. The spatial variation of δ<sup>13</sup>C<sub>DIC</sub> signatures showed that biogeochemical processes predominantly shape the δ<sup>13</sup>C<sub>DIC</sub> distribution along the water column. Photosynthesis enriched the surface waters with the heavier carbon isotope, with signatures ranging from 2 to 1.5‰, while organic matter remineralization depleted it below the mixed layer (ranging from 0 to − 2‰). Horizontally, δ<sup>13</sup>C<sub>DIC</sub> distribution was influenced by the higher contribution of each source water mass. Thermodynamic fractionation contributed to the enrichment of δ<sup>13</sup>C<sub>DIC</sub> (~ 1 to 1.5‰) in the CDW layer in Bransfield Strait. Conversely, the predominance of younger and colder DSW exhibited a depletion of δ<sup>13</sup>C<sub>DIC</sub> (− 1 to − 2‰). Therefore, δ<sup>13</sup>C<sub>DIC</sub> is identified as an additional tracer to provide new insights into the biogeochemical and hydrodynamic processes of Bransfield Strait.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01226-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogenic polyphosphate as relevant regulator of seasonal phosphate storage in surface sediments of stratified eutrophic lakes
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-04 DOI: 10.1007/s10533-025-01230-x
Lucas Schröder, Peter Schmieder, Michael Hupfer

Polyphosphate is formed by polyphosphate-accumulating organisms occurring in various terrestrial, freshwater, and marine ecosystems as well as industrial environments. Although polyphosphate-accumulating organisms and polyphosphate have been well studied in enhanced biological phosphorus (P) removal from wastewater treatment plants, their role in the internal P cycle of natural lakes remains unclear. Several studies have shown that polyphosphate storage is widespread in lake sediments. In this study, 31P nuclear magnetic resonance spectroscopy was used to analyse the seasonal dynamics of polyphosphate and its drivers at the sediment surface of three stratified German lakes with strong seasonality of hypolimnetic oxygen concentrations. Similar seasonal patterns of polyphosphate were observed in all three lakes. Polyphosphate content increased by a factor of three to five at the beginning of summer stratification, with the maximum content observed in May when oxygen was already very low. During this period, strong redox gradients prevailed within the topmost sediment layer, and highly soluble reactive P concentrations were present in the pore water due to the reductive release of P bound to iron(III)oxides and oxide-hydroxides. Polyphosphate acted as a temporary P storage and was released after a delay, which may mitigate sedimentary P release into the water body during the (early) summer stratification. The observed seasonal dynamics of polyphosphate at the sediment surface offer a novel insight into the link between the P and iron cycles in lakes.

{"title":"Biogenic polyphosphate as relevant regulator of seasonal phosphate storage in surface sediments of stratified eutrophic lakes","authors":"Lucas Schröder,&nbsp;Peter Schmieder,&nbsp;Michael Hupfer","doi":"10.1007/s10533-025-01230-x","DOIUrl":"10.1007/s10533-025-01230-x","url":null,"abstract":"<div><p>Polyphosphate is formed by polyphosphate-accumulating organisms occurring in various terrestrial, freshwater, and marine ecosystems as well as industrial environments. Although polyphosphate-accumulating organisms and polyphosphate have been well studied in enhanced biological phosphorus (P) removal from wastewater treatment plants, their role in the internal P cycle of natural lakes remains unclear. Several studies have shown that polyphosphate storage is widespread in lake sediments. In this study, <sup>31</sup>P nuclear magnetic resonance spectroscopy was used to analyse the seasonal dynamics of polyphosphate and its drivers at the sediment surface of three stratified German lakes with strong seasonality of hypolimnetic oxygen concentrations. Similar seasonal patterns of polyphosphate were observed in all three lakes. Polyphosphate content increased by a factor of three to five at the beginning of summer stratification, with the maximum content observed in May when oxygen was already very low. During this period, strong redox gradients prevailed within the topmost sediment layer, and highly soluble reactive P concentrations were present in the pore water due to the reductive release of P bound to iron(III)oxides and oxide-hydroxides. Polyphosphate acted as a temporary P storage and was released after a delay, which may mitigate sedimentary P release into the water body during the (early) summer stratification. The observed seasonal dynamics of polyphosphate at the sediment surface offer a novel insight into the link between the P and iron cycles in lakes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01230-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Detailed controls on biomineralization in an adult echinoderm: skeletal carbonate mineralogy of the New Zealand sand dollar (Fellaster zelandiae)
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-03 DOI: 10.1007/s10533-025-01228-5
Ian S. Dixon-Anderson, Abigail M. Smith
{"title":"Correction to: Detailed controls on biomineralization in an adult echinoderm: skeletal carbonate mineralogy of the New Zealand sand dollar (Fellaster zelandiae)","authors":"Ian S. Dixon-Anderson,&nbsp;Abigail M. Smith","doi":"10.1007/s10533-025-01228-5","DOIUrl":"10.1007/s10533-025-01228-5","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01228-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greenhouse gas fluxes from two drained pond sediments: a mesocosm study
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-04-01 DOI: 10.1007/s10533-025-01229-4
Thi Tra My Lang, Lars Schindler, Chihiro Nakajima, Lisa Hülsmann, Klaus-Holger Knorr, Werner Borken

Ponds can store large amounts of organic matter (OM) in their sediments, often accumulated over long periods of time. Sediment OM is largely protected from aerobic mineralization under water saturated conditions but are vulnerable when exposed to oxygen during periods of drought. As climate change progresses, drought periods are likely to occur more frequently and may affect OM mineralization, and thus the release of greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from pond ecosystems. Therefore, we aimed to test how GHG emissions and concentrations in the sediment respond to drought by gradually decreasing water levels to below the sediment surface. To this end, undisturbed sediment cores from two small ponds with distinct watershed and water chemistry characteristics were incubated in mesocosms for 118 days at 20 °C. Water levels were sequentially tested at 3 cm above the sediment surface (Phase I) and at the level of the sediment surface (Phase II). In Phase III, water levels were continuously lowered either by evaporation or by active drainage including evaporation. Mean CH4 fluxes of both ponds were high (21 and 87 mmol m−2 d−1), contributing 90 and 96% to the GHG budget over the three phases. The highest CH4 fluxes occurred in Phase II, while active drainage strongly reduced CH4 fluxes in Phase III. A multivariate analysis suggests that dissolved organic carbon and sulphate were important drivers of CH4 fluxes in Phase III. CO2 and N2O fluxes also responded to declining water levels, but their contribution to the GHG budget was rather small. Both gases were primarily produced in the upper sediment layer as indicated by highest concentrations at 5 cm sediment depth. Compaction of sediment cores by water level lowering increased bulk density and maintained high water contents. This side effect, retarding the drying of the sediment surface, was possibly relevant for the GHG net emission of the sediments in Phase II and III. Overall, GHG fluxes from the sediments exhibited high sensitivity to falling water levels. This study suggests that drying pond sediments have great potential to emit large amounts of GHGs to the atmosphere in the event of drought, representing hot spots of GHGs in the landscape.

{"title":"Greenhouse gas fluxes from two drained pond sediments: a mesocosm study","authors":"Thi Tra My Lang,&nbsp;Lars Schindler,&nbsp;Chihiro Nakajima,&nbsp;Lisa Hülsmann,&nbsp;Klaus-Holger Knorr,&nbsp;Werner Borken","doi":"10.1007/s10533-025-01229-4","DOIUrl":"10.1007/s10533-025-01229-4","url":null,"abstract":"<div><p>Ponds can store large amounts of organic matter (OM) in their sediments, often accumulated over long periods of time. Sediment OM is largely protected from aerobic mineralization under water saturated conditions but are vulnerable when exposed to oxygen during periods of drought. As climate change progresses, drought periods are likely to occur more frequently and may affect OM mineralization, and thus the release of greenhouse gases (GHGs) such as carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) from pond ecosystems. Therefore, we aimed to test how GHG emissions and concentrations in the sediment respond to drought by gradually decreasing water levels to below the sediment surface. To this end, undisturbed sediment cores from two small ponds with distinct watershed and water chemistry characteristics were incubated in mesocosms for 118 days at 20 °C. Water levels were sequentially tested at 3 cm above the sediment surface (Phase I) and at the level of the sediment surface (Phase II). In Phase III, water levels were continuously lowered either by evaporation or by active drainage including evaporation. Mean CH<sub>4</sub> fluxes of both ponds were high (21 and 87 mmol m<sup>−2</sup> d<sup>−1</sup>), contributing 90 and 96% to the GHG budget over the three phases. The highest CH<sub>4</sub> fluxes occurred in Phase II, while active drainage strongly reduced CH<sub>4</sub> fluxes in Phase III. A multivariate analysis suggests that dissolved organic carbon and sulphate were important drivers of CH<sub>4</sub> fluxes in Phase III. CO<sub>2</sub> and N<sub>2</sub>O fluxes also responded to declining water levels, but their contribution to the GHG budget was rather small. Both gases were primarily produced in the upper sediment layer as indicated by highest concentrations at 5 cm sediment depth. Compaction of sediment cores by water level lowering increased bulk density and maintained high water contents. This side effect, retarding the drying of the sediment surface, was possibly relevant for the GHG net emission of the sediments in Phase II and III. Overall, GHG fluxes from the sediments exhibited high sensitivity to falling water levels. This study suggests that drying pond sediments have great potential to emit large amounts of GHGs to the atmosphere in the event of drought, representing hot spots of GHGs in the landscape.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01229-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Environmental drivers of seasonal and hourly fluxes of methane and carbon dioxide across a lowland stream network with mixed catchment
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-19 DOI: 10.1007/s10533-025-01224-9
Benedichte Wiemann Olsen, Theis Kragh, Jonas Stage Sø, Emma Polauke, Kaj Sand-Jensen
{"title":"Correction to: Environmental drivers of seasonal and hourly fluxes of methane and carbon dioxide across a lowland stream network with mixed catchment","authors":"Benedichte Wiemann Olsen,&nbsp;Theis Kragh,&nbsp;Jonas Stage Sø,&nbsp;Emma Polauke,&nbsp;Kaj Sand-Jensen","doi":"10.1007/s10533-025-01224-9","DOIUrl":"10.1007/s10533-025-01224-9","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01224-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism and capacity of black carbon (biochar) to support microbial growth
IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-15 DOI: 10.1007/s10533-025-01221-y
Weila Li, Jessica L. Keffer, Ankit Singh, Clara S. Chan, Pei C. Chiu

Black carbon has been shown to suppress microbial methane production by promoting anaerobic oxidation of organic carbon, diverting electrons from methanogenesis. This finding represents a new process through which black carbon, such as wildfire char and biochar, can impact the climate. However, the mechanism and capacity of black carbon to support metabolism remained unclear. We hypothesized black carbon could support microbial growth exclusively through its electron storage capacity (ESC). The electron contents of a wood biochar was quantified through redox titration with titanium(III) citrate before and after Geobacter metallireducens growth, with acetate as an electron donor and air-oxidized biochar as an electron acceptor. Cell number increased 42-fold, from 2.8(± 0.6) × 108 to 1.17(± 0.14) × 1010, in 8 days based on fluorescent cell counting and the result was confirmed by qPCR. The qPCR results also showed that most cells existed in suspension, whereas cell attachment to biochar was minimal. Graphite, which conducts but does not store electrons, did not support growth. Through electron balance and use of singly 13C-labeled acetate (13CH3COO), we showed (1) G. metallireducens could use 0.86 mmol/g, or ~ 19%, of the biochar's ESC for growth, (2) 84% and 16% of the acetate was consumed for energy and biosynthesis, respectively, during biochar respiration and (3) ca. 80 billion electrons were deposited into biochar for each cell produced. This is the first study to establish electron balance for microbial respiration of black carbon and to quantitatively determine the mechanism and capacity of biochar-supported growth.

Graphical Abstract

{"title":"Mechanism and capacity of black carbon (biochar) to support microbial growth","authors":"Weila Li,&nbsp;Jessica L. Keffer,&nbsp;Ankit Singh,&nbsp;Clara S. Chan,&nbsp;Pei C. Chiu","doi":"10.1007/s10533-025-01221-y","DOIUrl":"10.1007/s10533-025-01221-y","url":null,"abstract":"<div><p>Black carbon has been shown to suppress microbial methane production by promoting anaerobic oxidation of organic carbon, diverting electrons from methanogenesis. This finding represents a new process through which black carbon, such as wildfire char and biochar, can impact the climate. However, the mechanism and capacity of black carbon to support metabolism remained unclear. We hypothesized black carbon could support microbial growth exclusively through its electron storage capacity (ESC). The electron contents of a wood biochar was quantified through redox titration with titanium(III) citrate before and after <i>Geobacter metallireducens</i> growth, with acetate as an electron donor and air-oxidized biochar as an electron acceptor. Cell number increased 42-fold, from 2.8(± 0.6) × 10<sup>8</sup> to 1.17(± 0.14) × 10<sup>10</sup>, in 8 days based on fluorescent cell counting and the result was confirmed by qPCR. The qPCR results also showed that most cells existed in suspension, whereas cell attachment to biochar was minimal. Graphite, which conducts but does not store electrons, did not support growth. Through electron balance and use of singly <sup>13</sup>C-labeled acetate (<sup>13</sup>CH<sub>3</sub>COO<sup><b>–</b></sup>), we showed (1) <i>G. metallireducens</i> could use 0.86 mmol/g, or ~ 19%, of the biochar's ESC for growth, (2) 84% and 16% of the acetate was consumed for energy and biosynthesis, respectively, during biochar respiration and (3) <i>ca</i>. 80 billion electrons were deposited into biochar for each cell produced. This is the first study to establish electron balance for microbial respiration of black carbon and to quantitatively determine the mechanism and capacity of biochar-supported growth.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01221-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biogeochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1