Liu Jianxia, Zhang Yongfang, Xue Naiwen, Cao Huifen, Wu Juan, Wen Riyu
{"title":"Arabidopsis SSL1 encoding AtMWFE subunit of mitochondrial complex I regulates leaf development and reactive oxygen species","authors":"Liu Jianxia, Zhang Yongfang, Xue Naiwen, Cao Huifen, Wu Juan, Wen Riyu","doi":"10.1007/s10725-024-01135-z","DOIUrl":null,"url":null,"abstract":"<p>Mitochondrial complex I is an NADH-ubiquinone oxidoreductase responsible for 40% of the production of mitochondrial ATP. It contains 14 core subunits and 25–35 non-core ones in different organisms. However, the role of these subunits in plant development remains largely unknown. Here, we report a novel <i>Arabidopsis</i> T-DNA insertion mutant. The T-DNA insertion mutant produced smaller and more serrated leaves than wild-type control. So, it is named that the <i>Arabidopsis small and serrated leaves 1</i> (<i>ssl1</i>). We identified a T-DNA insertion in the <i>AtMWFE</i> locus- that disrupted the function of <i>AtMWFE</i> in <i>ssl1</i>. <i>AtMWFE</i> encodes a conserved non-core subunit of mitochondrial complex I. The expression of <i>AtMWFE</i> complemented the leaf developmental defects of <i>ssl1</i>- thus SSL1 is the <i>At</i>MWFE subunit of mitochondrial complex I. We also showed that the compromise of <i>SSL1</i>/<i>AtMWFE</i> function led to the accumulation of ROS. Our findings reveal that SSL1/<i>At</i>MWFE is required for the function of mitochondrial complex I and the proper ROS level in leaves, and demonstrate that SSL1/<i>At</i>MWFE plays a critical role in leaf development.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"270 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01135-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial complex I is an NADH-ubiquinone oxidoreductase responsible for 40% of the production of mitochondrial ATP. It contains 14 core subunits and 25–35 non-core ones in different organisms. However, the role of these subunits in plant development remains largely unknown. Here, we report a novel Arabidopsis T-DNA insertion mutant. The T-DNA insertion mutant produced smaller and more serrated leaves than wild-type control. So, it is named that the Arabidopsis small and serrated leaves 1 (ssl1). We identified a T-DNA insertion in the AtMWFE locus- that disrupted the function of AtMWFE in ssl1. AtMWFE encodes a conserved non-core subunit of mitochondrial complex I. The expression of AtMWFE complemented the leaf developmental defects of ssl1- thus SSL1 is the AtMWFE subunit of mitochondrial complex I. We also showed that the compromise of SSL1/AtMWFE function led to the accumulation of ROS. Our findings reveal that SSL1/AtMWFE is required for the function of mitochondrial complex I and the proper ROS level in leaves, and demonstrate that SSL1/AtMWFE plays a critical role in leaf development.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.