High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering
Rashmi Runjhun, Essa A. Alharbi, Zygmunt Drużyński, Anurag Krishna, Małgorzata Wolska-Pietkiewicz, Viktor Škorjanc, Thomas P. Baumeler, George Kakavelakis, Felix Eickemeyer, Mounir Mensi, Shaik M. Zakeeruddin, Michael Graetzel, Janusz Lewiński
{"title":"High-Performance Perovskite Solar Cells with Zwitterion-Capped-ZnO Quantum Dots as Electron Transport Layer and NH4X (X = F, Cl, Br) Assisted Interfacial Engineering","authors":"Rashmi Runjhun, Essa A. Alharbi, Zygmunt Drużyński, Anurag Krishna, Małgorzata Wolska-Pietkiewicz, Viktor Škorjanc, Thomas P. Baumeler, George Kakavelakis, Felix Eickemeyer, Mounir Mensi, Shaik M. Zakeeruddin, Michael Graetzel, Janusz Lewiński","doi":"10.1002/eem2.12720","DOIUrl":null,"url":null,"abstract":"<p>The systematic advances in the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs) have been driven by the developments of perovskite materials, electron transport layer (ETL) materials, and interfacial passivation between the relevant layers. While zinc oxide (ZnO) is a promising ETL in thin film photovoltaics, it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface. Among various inorganic and organic additives, zwitterions have been effectively utilized to passivate the perovskite films. In this vein, we develop novel, well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture, combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides (NH<sub>4</sub>X, where X = F, Cl, Br). The champion device with the NH<sub>4</sub>F passivation achieves one of the highest performances reported for ZnO-based PSCs, exhibiting a maximum PCE of ~22% with a high fill factor of 80.3% and competitive stability, retaining ~78% of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12720","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12720","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The systematic advances in the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs) have been driven by the developments of perovskite materials, electron transport layer (ETL) materials, and interfacial passivation between the relevant layers. While zinc oxide (ZnO) is a promising ETL in thin film photovoltaics, it is still highly desirable to develop novel synthetic methods that allow both fine-tuning the versatility of ZnO nanomaterials and improving the ZnO/perovskite interface. Among various inorganic and organic additives, zwitterions have been effectively utilized to passivate the perovskite films. In this vein, we develop novel, well-characterized betaine-coated ZnO QDs and use them as an ETL in the planar n-i-p PSC architecture, combining the ZnO QDs-based ETL with the ZnO/perovskite interface passivation by a series of ammonium halides (NH4X, where X = F, Cl, Br). The champion device with the NH4F passivation achieves one of the highest performances reported for ZnO-based PSCs, exhibiting a maximum PCE of ~22% with a high fill factor of 80.3% and competitive stability, retaining ~78% of its initial PCE under 1 Sun illumination with maximum power tracking for 250 h.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.