首页 > 最新文献

Energy & Environmental Materials最新文献

英文 中文
Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-08 DOI: 10.1002/eem2.12848
Jeong-Hyun Kim, Jeong-Gyu Lee, Chang Seong Kim, Min-Jae Choi

Cobalt pentlandite (Co9S8) is a promising non-precious catalyst due to its superior oxygen reduction reaction activity and excellent stability. However, its oxygen reduction reaction catalytic activity has traditionally been limited to the four-electron pathway because of strong *OOH intermediate adsorption. In this study, we synthesized electron-deficient Co9S8 nanocrystals with an increased number of Co3+ states compared to conventional Co9S8. This was achieved by incorporating a high density of surface ligands in small-sized Co9S8 nanocrystals, which enabled the transition of the electrochemical reduction pathway from four-electron oxygen reduction reaction to two-electron oxygen reduction reaction by decreasing *OOH adsorption strength. As a result, the Co3+-enriched Co9S8 nanocrystals exhibited a high onset potential of 0.64 V (vs RHE) for two-electron oxygen reduction reaction, achieving H2O2 selectivity of 70–80% over the potential range from 0.05 to 0.6 V. Additionally, these nanocrystals demonstrated a stable H2O2 electrosynthesis at a rate of 459.12 mmol g−1 h−1 with a H2O2 Faradaic efficiency over 90% under alkaline conditions. This study provides insights into nanoscale catalyst design for modulating electrochemical reactions.

{"title":"Ligand-Driven Electron-Deficient Cobalt Pentlandite Nanocrystals for Efficient Hydrogen Peroxide Electrosynthesis","authors":"Jeong-Hyun Kim,&nbsp;Jeong-Gyu Lee,&nbsp;Chang Seong Kim,&nbsp;Min-Jae Choi","doi":"10.1002/eem2.12848","DOIUrl":"https://doi.org/10.1002/eem2.12848","url":null,"abstract":"<p>Cobalt pentlandite (Co<sub>9</sub>S<sub>8</sub>) is a promising non-precious catalyst due to its superior oxygen reduction reaction activity and excellent stability. However, its oxygen reduction reaction catalytic activity has traditionally been limited to the four-electron pathway because of strong *OOH intermediate adsorption. In this study, we synthesized electron-deficient Co<sub>9</sub>S<sub>8</sub> nanocrystals with an increased number of Co<sup>3+</sup> states compared to conventional Co<sub>9</sub>S<sub>8</sub>. This was achieved by incorporating a high density of surface ligands in small-sized Co<sub>9</sub>S<sub>8</sub> nanocrystals, which enabled the transition of the electrochemical reduction pathway from four-electron oxygen reduction reaction to two-electron oxygen reduction reaction by decreasing *OOH adsorption strength. As a result, the Co<sup>3+</sup>-enriched Co<sub>9</sub>S<sub>8</sub> nanocrystals exhibited a high onset potential of 0.64 V (vs RHE) for two-electron oxygen reduction reaction, achieving H<sub>2</sub>O<sub>2</sub> selectivity of 70–80% over the potential range from 0.05 to 0.6 V. Additionally, these nanocrystals demonstrated a stable H<sub>2</sub>O<sub>2</sub> electrosynthesis at a rate of 459.12 mmol g<sup>−1</sup> h<sup>−1</sup> with a H<sub>2</sub>O<sub>2</sub> Faradaic efficiency over 90% under alkaline conditions. This study provides insights into nanoscale catalyst design for modulating electrochemical reactions.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superior Energy Storage Performance in Crosslinked Binary Polymers at High Temperatures Via Confinement Effect
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-28 DOI: 10.1002/eem2.12847
Yongbin Liu, Yating Xu, Jinghui Gao, Jingzhe Xu, Ming Wu, Zhengwei Liu, Yilong Wang, Xiaojie Lou, Lisheng Zhong

High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications, but the trade-off between energy density and temperature stability remains fundamentally challenging. Here, we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend. Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about 6.2 ~ 8.5 J cm−3 up to 110 °C, showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers. Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network, which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results. Our findings provide a general and straightforward strategy to attain temperature-stable, high-energy-density polymer-based dielectrics for energy storage capacitors.

{"title":"Superior Energy Storage Performance in Crosslinked Binary Polymers at High Temperatures Via Confinement Effect","authors":"Yongbin Liu,&nbsp;Yating Xu,&nbsp;Jinghui Gao,&nbsp;Jingzhe Xu,&nbsp;Ming Wu,&nbsp;Zhengwei Liu,&nbsp;Yilong Wang,&nbsp;Xiaojie Lou,&nbsp;Lisheng Zhong","doi":"10.1002/eem2.12847","DOIUrl":"https://doi.org/10.1002/eem2.12847","url":null,"abstract":"<p>High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications, but the trade-off between energy density and temperature stability remains fundamentally challenging. Here, we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend. Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about 6.2 ~ 8.5 J cm<sup>−3</sup> up to 110 °C, showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers. Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network, which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results. Our findings provide a general and straightforward strategy to attain temperature-stable, high-energy-density polymer-based dielectrics for energy storage capacitors.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving 2.1% Efficiency in Alpha-Voltaic Cell Based on Silicon Carbide Transducer 基于碳化硅换能器的阿尔法光伏电池实现 2.1% 的效率
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-27 DOI: 10.1002/eem2.12846
Runlong Gao, Wuying Ma, Pengying Wan, Ao Liu, Xiao Ouyang, Xue Du, Qiantao Lei, Qi Deng, Linyue Liu, Xiaoping Ouyang

Alpha-voltaic cell is a type of micro nuclear battery that provides several decades of reliable power in the nanowatt to microwatt range, supplying for special applications where traditional chemical batteries or solar cells are difficult to operate. However, the power conversion efficiency of the alpha-voltaic cells reported are still far behind the theoretical limit, making the development of alpha-voltaic cell challenging. Developing advanced semiconductor transducers with higher efficiency in converting the energy of alpha particles into electric energy is proving to be necessary for realizing high-power conversion efficiency. Herein, we propose an alpha-voltaic cell based on SiC PIN transducer that includes a sensitive region with an area of 1 cm2, a width of 51.2 μm, and a charge collection efficiency of 95.6% at 0 V bias. We find that optimizing the unintentional doping concentration and crystal quality of the SiC epitaxial layer can significantly increase the absorption and utilization of the energy of alpha particles, resulting in a 2.4-fold enhancement in power conversion efficiency compared with that of the previous study. Electrical properties of the SiC alpha-voltaic cell are measured using an He-ion accelerator as the equivalent α-radioisotopes, with the best power conversion efficiency of 2.10% and maximum output power density of 406.66 nW cm−2 is obtained. Our research makes a big leap in SiC alpha-voltaic cell, bridging the gap between micro nuclear batteries and practical applications in micro-electromechanical systems, micro aerial vehicles, and tiny satellites.

{"title":"Achieving 2.1% Efficiency in Alpha-Voltaic Cell Based on Silicon Carbide Transducer","authors":"Runlong Gao,&nbsp;Wuying Ma,&nbsp;Pengying Wan,&nbsp;Ao Liu,&nbsp;Xiao Ouyang,&nbsp;Xue Du,&nbsp;Qiantao Lei,&nbsp;Qi Deng,&nbsp;Linyue Liu,&nbsp;Xiaoping Ouyang","doi":"10.1002/eem2.12846","DOIUrl":"https://doi.org/10.1002/eem2.12846","url":null,"abstract":"<p>Alpha-voltaic cell is a type of micro nuclear battery that provides several decades of reliable power in the nanowatt to microwatt range, supplying for special applications where traditional chemical batteries or solar cells are difficult to operate. However, the power conversion efficiency of the alpha-voltaic cells reported are still far behind the theoretical limit, making the development of alpha-voltaic cell challenging. Developing advanced semiconductor transducers with higher efficiency in converting the energy of alpha particles into electric energy is proving to be necessary for realizing high-power conversion efficiency. Herein, we propose an alpha-voltaic cell based on SiC PIN transducer that includes a sensitive region with an area of 1 cm<sup>2</sup>, a width of 51.2 μm, and a charge collection efficiency of 95.6% at 0 V bias. We find that optimizing the unintentional doping concentration and crystal quality of the SiC epitaxial layer can significantly increase the absorption and utilization of the energy of alpha particles, resulting in a 2.4-fold enhancement in power conversion efficiency compared with that of the previous study. Electrical properties of the SiC alpha-voltaic cell are measured using an He-ion accelerator as the equivalent α-radioisotopes, with the best power conversion efficiency of 2.10% and maximum output power density of 406.66 nW cm<sup>−2</sup> is obtained. Our research makes a big leap in SiC alpha-voltaic cell, bridging the gap between micro nuclear batteries and practical applications in micro-electromechanical systems, micro aerial vehicles, and tiny satellites.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12846","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Biomimetic Sub-Nanostructured Ion-Selective Nanofiltration Membrane for Excellent Separation of Li+/Co2+
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-25 DOI: 10.1002/eem2.12845
Yanrui Wang, Haochun Wang, Yating Hu, Meng Zhang, Zixin Ma, Shu Jiang, Jinlong Wang, Heng Liang, Xiaobin Tang

Nanofiltration (NF) membranes with exceptional ion selectivity and permeability are needed for the recovery of lithium from waste lithium-ion batteries. Herein, inspired by the homogeneous microchannels in the skeletal structure of glass sponges, an innovative biomimetic sponge-like sub-nanostructured NF membrane was designed using an alkali-induced MXene (AMXene)-ethyl formate (EF)-induced bulk/interfacial diffusion decoupling strategy to simultaneously improve Li+/Co2+ selectivity and membrane permeability. The Li+/Co2+ separation factor (SLi,Co = 24) of the engineered membrane was improved by an order of magnitude compared to that of an NF270 membrane (SLi,Co = 2). The selectivity of Mg2+/Na+ (BNaCl/BMgCl2 = 286) and SO42/Cl (BNaCl/BNaSO4 = 941) increased by 3 ~ 12 times, and the permeability (25.8 L m−2 h−1 bar−1) remained at a desirable level, beyond the current upper bound of the other cutting-edge membranes. The superior performance was attributed to the limited release of amine in bulk phase and the boosted interfacial diffusion by reducing interfacial energy barrier during the interfacial polymerization reaction, which were realized via the synergetic effects of AMXene and EF. This approach yielded a biomimetic sponge-like sub-nanostructured NF membrane with controlled homogeneous pore radii (0.202 nm) and a thickness as small as 16.08 nm, which led to high ion selectivity and permeability. The engineered membrane was capable of efficient separation and recovery of Li+/metal ions.

{"title":"Engineering Biomimetic Sub-Nanostructured Ion-Selective Nanofiltration Membrane for Excellent Separation of Li+/Co2+","authors":"Yanrui Wang,&nbsp;Haochun Wang,&nbsp;Yating Hu,&nbsp;Meng Zhang,&nbsp;Zixin Ma,&nbsp;Shu Jiang,&nbsp;Jinlong Wang,&nbsp;Heng Liang,&nbsp;Xiaobin Tang","doi":"10.1002/eem2.12845","DOIUrl":"https://doi.org/10.1002/eem2.12845","url":null,"abstract":"<p>Nanofiltration (NF) membranes with exceptional ion selectivity and permeability are needed for the recovery of lithium from waste lithium-ion batteries. Herein, inspired by the homogeneous microchannels in the skeletal structure of glass sponges, an innovative biomimetic sponge-like sub-nanostructured NF membrane was designed using an alkali-induced MXene (AMXene)-ethyl formate (EF)-induced bulk/interfacial diffusion decoupling strategy to simultaneously improve Li<sup>+</sup>/Co<sup>2+</sup> selectivity and membrane permeability. The Li<sup>+</sup>/Co<sup>2+</sup> separation factor (S<sub>Li,Co</sub> = 24) of the engineered membrane was improved by an order of magnitude compared to that of an NF270 membrane (S<sub>Li,Co</sub> = 2). The selectivity of Mg<sup>2+</sup>/Na<sup>+</sup> (<span></span><math>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mtext>NaCl</mtext>\u0000 </msub>\u0000 <mo>/</mo>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <msub>\u0000 <mtext>MgCl</mtext>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </msub></math> = 286) and <span></span><math>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>SO</mi>\u0000 <mn>4</mn>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>−</mo>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow></math>/Cl<sup>−</sup> (<span></span><math>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mtext>NaCl</mtext>\u0000 </msub>\u0000 <mo>/</mo>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <msub>\u0000 <mtext>NaSO</mtext>\u0000 <mn>4</mn>\u0000 </msub>\u0000 </msub></math> = 941) increased by 3 ~ 12 times, and the permeability (25.8 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) remained at a desirable level, beyond the current upper bound of the other cutting-edge membranes. The superior performance was attributed to the limited release of amine in bulk phase and the boosted interfacial diffusion by reducing interfacial energy barrier during the interfacial polymerization reaction, which were realized via the synergetic effects of AMXene and EF. This approach yielded a biomimetic sponge-like sub-nanostructured NF membrane with controlled homogeneous pore radii (0.202 nm) and a thickness as small as 16.08 nm, which led to high ion selectivity and permeability. The engineered membrane was capable of efficient separation and recovery of Li<sup>+</sup>/metal ions.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Situ Pt-Decorated, Direct Growth of Mixed Phase 2H/1T–MoSe2 on Carbon Paper for Enhanced Hydrogen Evolution Reaction
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-23 DOI: 10.1002/eem2.12849
Jong-Hwan Park, Sun-Woo Kim, So Young Lee, Yuri Jung, Jae-Chul Ro, Seong-Ju Park, Hyoung-Juhn Kim, Dong Han Seo, Su-Jeong Suh

Metal dichalcogenide-based 2D materials, gained considerable attention recently as a hydrogen evolution reaction (HER) electrocatalyst. In this work, we synthesized MoSe2-based electrocatalyst via hydrothermal route with varying phase contents (1T/2H) and respective HER performances were evaluated under the acidic media (0.5 m H2SO4), where best HER performance was obtained from the sample consisting of mixed 1T/2H phases, which was directly grown on a carbon paper (167 mV at 10 mA cm−2) Furthermore, HER performance of electrocatalyst was further improved by in-situ electrodeposition of Pt nanoparticles (0.15 wt%) on the MoSe2 surface, which lead to significant enhancement in the HER performances (133 mV at 10 mA cm−2). Finally, we conducted density functional theory calculations to reveal the origin of such enhanced performances when the mixed 1T/2H phases were present, where phase boundary region (1T/2H heterojunction) act as a low energy pathway for H2 adsorption and desorption via electron accumulation effect. Moreover, presence of the Pt nanoparticles tunes the electronic states of the MoSe2 based catalyst, resulting in the enhanced HER activity at heterointerface of 1T/2H MoSe2 while facilitating the hydrogen adsorption and desorption process providing a low energy pathway for HER. These results provide new insight on atomic level understanding of the MoSe2 based catalyst for HER application.

{"title":"In-Situ Pt-Decorated, Direct Growth of Mixed Phase 2H/1T–MoSe2 on Carbon Paper for Enhanced Hydrogen Evolution Reaction","authors":"Jong-Hwan Park,&nbsp;Sun-Woo Kim,&nbsp;So Young Lee,&nbsp;Yuri Jung,&nbsp;Jae-Chul Ro,&nbsp;Seong-Ju Park,&nbsp;Hyoung-Juhn Kim,&nbsp;Dong Han Seo,&nbsp;Su-Jeong Suh","doi":"10.1002/eem2.12849","DOIUrl":"https://doi.org/10.1002/eem2.12849","url":null,"abstract":"<p>Metal dichalcogenide-based 2D materials, gained considerable attention recently as a hydrogen evolution reaction (HER) electrocatalyst. In this work, we synthesized MoSe<sub>2</sub>-based electrocatalyst via hydrothermal route with varying phase contents (1T/2H) and respective HER performances were evaluated under the acidic media (0.5 <span>m</span> H<sub>2</sub>SO<sub>4</sub>), where best HER performance was obtained from the sample consisting of mixed 1T/2H phases, which was directly grown on a carbon paper (167 mV at 10 mA cm<sup>−2</sup>) Furthermore, HER performance of electrocatalyst was further improved by in-situ electrodeposition of Pt nanoparticles (0.15 wt%) on the MoSe<sub>2</sub> surface, which lead to significant enhancement in the HER performances (133 mV at 10 mA cm<sup>−2</sup>). Finally, we conducted density functional theory calculations to reveal the origin of such enhanced performances when the mixed 1T/2H phases were present, where phase boundary region (1T/2H heterojunction) act as a low energy pathway for H<sub>2</sub> adsorption and desorption via electron accumulation effect. Moreover, presence of the Pt nanoparticles tunes the electronic states of the MoSe<sub>2</sub> based catalyst, resulting in the enhanced HER activity at heterointerface of 1T/2H MoSe<sub>2</sub> while facilitating the hydrogen adsorption and desorption process providing a low energy pathway for HER. These results provide new insight on atomic level understanding of the MoSe<sub>2</sub> based catalyst for HER application.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12849","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Membranes from Microporous Materials for Hydrogen Separation from Light Gases
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1002/eem2.12843
Nicholaus Prasetya, I Gede Wenten, Bradley Paul Ladewig

With the pressing concern of the climate change, hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy. In this case, the role of membrane-based separation cannot be neglected since, compared with other conventional process, membrane-based process is more effective and consumes less energy. Regarding this, metal-based membranes, particularly palladium, are usually employed for hydrogen separation because of its high selectivity. However, with the advancement of various microporous materials, the status quo of the metal-based membranes could be challenged since, compared with the metal-based membranes, they could offer better hydrogen separation performance and could also be cheaper to be produced. In this article, the advancement of membranes fabricated from five main microporous materials, namely silica-based membranes, zeolite membranes, carbon-based membranes, metal organic frameworks/covalent organic frameworks (MOF/COF) membranes and microporous polymeric membranes, for hydrogen separation from light gases are extensively discussed. Their performances are then summarized to give further insights regarding the pathway that should be taken to direct the research direction in the future.

{"title":"Advances in Membranes from Microporous Materials for Hydrogen Separation from Light Gases","authors":"Nicholaus Prasetya,&nbsp;I Gede Wenten,&nbsp;Bradley Paul Ladewig","doi":"10.1002/eem2.12843","DOIUrl":"https://doi.org/10.1002/eem2.12843","url":null,"abstract":"<p>With the pressing concern of the climate change, hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy. In this case, the role of membrane-based separation cannot be neglected since, compared with other conventional process, membrane-based process is more effective and consumes less energy. Regarding this, metal-based membranes, particularly palladium, are usually employed for hydrogen separation because of its high selectivity. However, with the advancement of various microporous materials, the <i>status quo</i> of the metal-based membranes could be challenged since, compared with the metal-based membranes, they could offer better hydrogen separation performance and could also be cheaper to be produced. In this article, the advancement of membranes fabricated from five main microporous materials, namely silica-based membranes, zeolite membranes, carbon-based membranes, metal organic frameworks/covalent organic frameworks (MOF/COF) membranes and microporous polymeric membranes, for hydrogen separation from light gases are extensively discussed. Their performances are then summarized to give further insights regarding the pathway that should be taken to direct the research direction in the future.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12843","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous WO3-Dot-Decorated Flexible Electrodes for the Determination of Industrial Pollutants
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1002/eem2.12842
Aneesh Koyappayil, Hyunho Seok, Gwan Hyun Choi, Sachin Chavan, Sangho Yeon, Sihoon Son, Anna Go, Jinhyoung Lee, Keon-Woo Kim, Dongho Lee, Hyun-Bin Choi, Hyeong-U Kim, Jin Kon Kim, Taesung Kim, Min-Ho Lee

This study demonstrates the fabrication of mesoporous tungsten trioxide (WO3)-decorated flexible polyimide (PI) electrodes for the highly sensitive detection of catechol (CC) and hydroquinone (HQ), two environmental pollutants. Organic–inorganic composite dots are formed on flexible PI electrodes using evaporation-induced self-assembly (EISA) and electrospray methods. The EISA process is induced by a temperature gradient during electrospray, and the heated substrate partially decomposes the organic parts etched by O2 plasma, creating mesoporous structures. Differential pulse voltammetry and cyclic voltammetry demonstrate a linear correlation between analyte concentration and the electrochemical response. Computational studies support the spontaneous adsorption of CC and HQ molecules on model WO3 surfaces. The proposed sensor shows high sensitivity, a wide linear range, and a low detection limit for both individual and simultaneous determination of CC and HQ. Real sample analysis on river water confirms practical applicability. The WO3-decorated PI electrode presents an efficient and reliable approach for detecting these pollutants, contributing to environmental safety measures.

本研究展示了介孔三氧化钨(WO3)装饰柔性聚酰亚胺(PI)电极的制备方法,用于高灵敏度检测邻苯二酚(CC)和对苯二酚(HQ)这两种环境污染物。采用蒸发诱导自组装(EISA)和电喷雾方法在柔性聚酰亚胺电极上形成了有机-无机复合点。电喷雾过程中的温度梯度诱导了蒸发诱导自组装过程,加热的基底部分分解了经臭氧等离子体蚀刻的有机部分,形成了介孔结构。差分脉冲伏安法和循环伏安法证明了分析物浓度与电化学响应之间的线性关系。计算研究支持 CC 和 HQ 分子在模型 WO3 表面的自发吸附。该传感器灵敏度高、线性范围宽、检测限低,可单独或同时测定 CC 和 HQ。对河水的实际样品分析证实了其实用性。WO3 涂层 PI 电极是检测这些污染物的一种高效可靠的方法,有助于环境安全措施的实施。
{"title":"Mesoporous WO3-Dot-Decorated Flexible Electrodes for the Determination of Industrial Pollutants","authors":"Aneesh Koyappayil,&nbsp;Hyunho Seok,&nbsp;Gwan Hyun Choi,&nbsp;Sachin Chavan,&nbsp;Sangho Yeon,&nbsp;Sihoon Son,&nbsp;Anna Go,&nbsp;Jinhyoung Lee,&nbsp;Keon-Woo Kim,&nbsp;Dongho Lee,&nbsp;Hyun-Bin Choi,&nbsp;Hyeong-U Kim,&nbsp;Jin Kon Kim,&nbsp;Taesung Kim,&nbsp;Min-Ho Lee","doi":"10.1002/eem2.12842","DOIUrl":"https://doi.org/10.1002/eem2.12842","url":null,"abstract":"<p>This study demonstrates the fabrication of mesoporous tungsten trioxide (WO<sub>3</sub>)-decorated flexible polyimide (PI) electrodes for the highly sensitive detection of catechol (CC) and hydroquinone (HQ), two environmental pollutants. Organic–inorganic composite dots are formed on flexible PI electrodes using evaporation-induced self-assembly (EISA) and electrospray methods. The EISA process is induced by a temperature gradient during electrospray, and the heated substrate partially decomposes the organic parts etched by O<sub>2</sub> plasma, creating mesoporous structures. Differential pulse voltammetry and cyclic voltammetry demonstrate a linear correlation between analyte concentration and the electrochemical response. Computational studies support the spontaneous adsorption of CC and HQ molecules on model WO<sub>3</sub> surfaces. The proposed sensor shows high sensitivity, a wide linear range, and a low detection limit for both individual and simultaneous determination of CC and HQ. Real sample analysis on river water confirms practical applicability. The WO<sub>3</sub>-decorated PI electrode presents an efficient and reliable approach for detecting these pollutants, contributing to environmental safety measures.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12842","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun Membranes of Hydrophobic Polyimide and NH2-UiO-66 Nanocomposite for Desalination
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1002/eem2.12841
Seungju Kim, Jue Hou, Namita Roy Choudhury, Sandra E. Kentish

Hydrophobic nanofiber composite membranes comprising polyimide and metal–organic frameworks are developed for desalination via direct contact membrane distillation (DCMD). Our study demonstrates the synthesis of hydrophobic polyimides with trifluoromethyl groups, along with superhydrophobic UiO-66 (hMOF) prepared by phenylsilane modification on the metal-oxo nodes. These components are then combined to create nanofiber membranes with improved hydrophobicity, ensuring long-term stability while preserving a high water flux. Integration of hMOF into the polymer matrix further increases membrane hydrophobic properties and provides additional pathways for vapor transport during MD. The resulting nanofiber composite membranes containing 20 wt% of hMOFs (PI-1-hMOF-20) were able to desalinate hypersaline feed solution of up to 17 wt% NaCl solution, conditions that are beyond the capability of reverse osmosis systems. These membranes demonstrated a water flux of 68.1 kg m−2 h−1 with a rejection rate of 99.98% for a simulated seawater solution of 3.5 wt% NaCl at 70 °C, while maintaining consistent desalination performance for 250 h.

我们开发了由聚酰亚胺和金属有机框架组成的疏水纳米纤维复合膜,用于通过直接接触膜蒸馏法(DCMD)进行海水淡化。我们的研究展示了带有三氟甲基基团的疏水性聚酰亚胺的合成,以及在金属氧节点上通过苯基硅烷改性制备的超疏水性 UiO-66 (hMOF)。然后将这些成分结合在一起,制成疏水性更强的纳米纤维膜,在保持高水通量的同时确保长期稳定性。将 hMOF 集成到聚合物基质中可进一步提高膜的疏水性,并在 MD 过程中为水蒸气传输提供更多途径。由此产生的含有 20 wt% hMOFs 的纳米纤维复合膜(PI-1-hMOF-20)能够淡化高达 17 wt% NaCl 溶液的高盐分进料溶液,这种条件超出了反渗透系统的能力。这些膜在 70 °C、3.5 wt% NaCl 的模拟海水溶液中显示出 68.1 kg m-2 h-1 的水通量和 99.98% 的排斥率,同时在 250 小时内保持稳定的脱盐性能。
{"title":"Electrospun Membranes of Hydrophobic Polyimide and NH2-UiO-66 Nanocomposite for Desalination","authors":"Seungju Kim,&nbsp;Jue Hou,&nbsp;Namita Roy Choudhury,&nbsp;Sandra E. Kentish","doi":"10.1002/eem2.12841","DOIUrl":"https://doi.org/10.1002/eem2.12841","url":null,"abstract":"<p>Hydrophobic nanofiber composite membranes comprising polyimide and metal–organic frameworks are developed for desalination via direct contact membrane distillation (DCMD). Our study demonstrates the synthesis of hydrophobic polyimides with trifluoromethyl groups, along with superhydrophobic UiO-66 (hMOF) prepared by phenylsilane modification on the metal-oxo nodes. These components are then combined to create nanofiber membranes with improved hydrophobicity, ensuring long-term stability while preserving a high water flux. Integration of hMOF into the polymer matrix further increases membrane hydrophobic properties and provides additional pathways for vapor transport during MD. The resulting nanofiber composite membranes containing 20 wt% of hMOFs (PI-1-hMOF-20) were able to desalinate hypersaline feed solution of up to 17 wt% NaCl solution, conditions that are beyond the capability of reverse osmosis systems. These membranes demonstrated a water flux of 68.1 kg m<sup>−2</sup> h<sup>−1</sup> with a rejection rate of 99.98% for a simulated seawater solution of 3.5 wt% NaCl at 70 °C, while maintaining consistent desalination performance for 250 h.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12841","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-03 DOI: 10.1002/eem2.12844
Aqsa Nazir, Anil Pathak, Dambar Hamal, Osama Awadallah, Saeme Motevalian, Ana Claus, Vadym Drozd, Bilal El-Zahab

The intricate sulfur redox chemistry involves multiple electron transfers and complicated phase changes. Catalysts have been previously explored to overcome the kinetic barrier in lithium–sulfur batteries (LSBs). This work contributes to closing the knowledge gap and examines electrocatalysis for enhancing LSB kinetics. With a strong chemical affinity for polysulfides, the electrocatalyst enables efficient adsorption and accelerated electron transfer reactions. Resulting cells with catalyzed cathodes exhibit improved rate capability and excellent stability over 500 cycles with 91.9% capacity retention at C/3. In addition, cells were shown to perform at high rates up to 2C and at high sulfur loadings up to 6 mg cm−2. Various electrochemical, spectroscopic, and microscopic analyses provide insights into the mechanism for retaining high activity, coulombic efficiency, and capacity. This work delves into crucial processes identifying pivotal reaction steps during the cycling process at commercially relevant areal capacities and rates.

{"title":"Targeted Electrocatalysis for High-Performance Lithium–Sulfur Batteries","authors":"Aqsa Nazir,&nbsp;Anil Pathak,&nbsp;Dambar Hamal,&nbsp;Osama Awadallah,&nbsp;Saeme Motevalian,&nbsp;Ana Claus,&nbsp;Vadym Drozd,&nbsp;Bilal El-Zahab","doi":"10.1002/eem2.12844","DOIUrl":"https://doi.org/10.1002/eem2.12844","url":null,"abstract":"<p>The intricate sulfur redox chemistry involves multiple electron transfers and complicated phase changes. Catalysts have been previously explored to overcome the kinetic barrier in lithium–sulfur batteries (LSBs). This work contributes to closing the knowledge gap and examines electrocatalysis for enhancing LSB kinetics. With a strong chemical affinity for polysulfides, the electrocatalyst enables efficient adsorption and accelerated electron transfer reactions. Resulting cells with catalyzed cathodes exhibit improved rate capability and excellent stability over 500 cycles with 91.9% capacity retention at C/3. In addition, cells were shown to perform at high rates up to 2C and at high sulfur loadings up to 6 mg cm<sup>−2</sup>. Various electrochemical, spectroscopic, and microscopic analyses provide insights into the mechanism for retaining high activity, coulombic efficiency, and capacity. This work delves into crucial processes identifying pivotal reaction steps during the cycling process at commercially relevant areal capacities and rates.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Electrodes and Electrolytes for Silicon-Based Anode Lithium-Ion Batteries
IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1002/eem2.12838
Xiaoyi Chen, Bin Wang, Yaowen Ye, Jin Liang, Jie Kong

The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity (372 mAh g−1). There is an urgent need to explore novel anode materials for lithium-ion batteries. Silicon (Si), the second-largest element outside of Earth, has an exceptionally high specific capacity (3579 mAh g−1), regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries. However, it is low intrinsic conductivity and volume amplification during service status, prevented it from developing further. These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure. This review looks at the diffusion mechanism, various silicon-based anode material configurations (including sandwich, core-shell, yolk-shell, and other 3D mesh/porous structures), as well as the appropriate binders and electrolytes. Finally, a summary and viewpoints are offered on the characteristics and structural layout of various structures, metal/non-metal doping, and the compatibility and application of various binders and electrolytes for silicon-based anodes. This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries, as well as their integration with binders and electrolyte.

{"title":"Design of Electrodes and Electrolytes for Silicon-Based Anode Lithium-Ion Batteries","authors":"Xiaoyi Chen,&nbsp;Bin Wang,&nbsp;Yaowen Ye,&nbsp;Jin Liang,&nbsp;Jie Kong","doi":"10.1002/eem2.12838","DOIUrl":"https://doi.org/10.1002/eem2.12838","url":null,"abstract":"<p>The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity (372 mAh g<sup>−1</sup>). There is an urgent need to explore novel anode materials for lithium-ion batteries. Silicon (Si), the second-largest element outside of Earth, has an exceptionally high specific capacity (3579 mAh g<sup>−1</sup>), regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries. However, it is low intrinsic conductivity and volume amplification during service status, prevented it from developing further. These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure. This review looks at the diffusion mechanism, various silicon-based anode material configurations (including sandwich, core-shell, yolk-shell, and other 3D mesh/porous structures), as well as the appropriate binders and electrolytes. Finally, a summary and viewpoints are offered on the characteristics and structural layout of various structures, metal/non-metal doping, and the compatibility and application of various binders and electrolytes for silicon-based anodes. This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries, as well as their integration with binders and electrolyte.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energy & Environmental Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1