Water electrolysis using renewable electricity is a promising strategy for high-purity hydrogen production. To realize the practical application of water electrolysis, an electrocatalyst with high redox properties and low cost is essential for enhancing the sluggish oxygen evolution reaction. Herein, we fabricated Fe-doped nickel oxalate (Fe-NiC2O4) directly grown on nickel (Ni) foam as an efficient electrocatalyst for the alkaline oxygen evolution reaction using a facile one-step hydrothermal method. Fe-NiC2O4 served as a precursor for obtaining highly active Fe-doped Ni oxyhydroxide (Fe-NiOOH) via in situ electrochemical oxidation. Consequently, 0.75Fe-NiOOH was demonstrated to be the optimal electrocatalyst, exhibiting outstanding oxygen evolution reaction activity with a low overpotential of 220 mV at a current density of 100 mA cm−2 and a Tafel slope of 20.5 mV dec−1. Furthermore, Fe-NiOOH maintained its oxygen evolution reaction activity without performance decay during long-term electrochemical measurements, owing to the phase transformation from nickel oxyhydroxide (NiOOH) to γ-NiOOH (gamma nickel oxyhydroxide). These performances significantly surpass those of recently reported transition-metal-based electrocatalysts.
{"title":"Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction","authors":"Jiyoung Kim, JeongEun Yoo, Kiyoung Lee","doi":"10.1002/eem2.12827","DOIUrl":"https://doi.org/10.1002/eem2.12827","url":null,"abstract":"Water electrolysis using renewable electricity is a promising strategy for high-purity hydrogen production. To realize the practical application of water electrolysis, an electrocatalyst with high redox properties and low cost is essential for enhancing the sluggish oxygen evolution reaction. Herein, we fabricated Fe-doped nickel oxalate (Fe-NiC<sub>2</sub>O<sub>4</sub>) directly grown on nickel (Ni) foam as an efficient electrocatalyst for the alkaline oxygen evolution reaction using a facile one-step hydrothermal method. Fe-NiC<sub>2</sub>O<sub>4</sub> served as a precursor for obtaining highly active Fe-doped Ni oxyhydroxide (Fe-NiOOH) via <i>in situ</i> electrochemical oxidation. Consequently, 0.75Fe-NiOOH was demonstrated to be the optimal electrocatalyst, exhibiting outstanding oxygen evolution reaction activity with a low overpotential of 220 mV at a current density of 100 mA cm<sup>−2</sup> and a Tafel slope of 20.5 mV dec<sup>−1</sup>. Furthermore, Fe-NiOOH maintained its oxygen evolution reaction activity without performance decay during long-term electrochemical measurements, owing to the phase transformation from nickel oxyhydroxide (NiOOH) to γ-NiOOH (gamma nickel oxyhydroxide). These performances significantly surpass those of recently reported transition-metal-based electrocatalysts.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"173 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Self-assembled monolayers (SAMs) are widely used as hole transport materials in inverted perovskite solar cells, offering low parasitic absorption and suitability for semitransparent and tandem solar cells. While SAMs have shown to be promising in small-area devices (≤1 cm2), their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach. Here, we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz), one of the most common carbazole-based SAMs. The impact of these deposition methods on the device performance is investigated, revealing that the spray-coating technique yields higher device performance. Furthermore, our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules. In addition, we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods, which allow for thicker 2PACz deposition. It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.
{"title":"Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods","authors":"Silvia Mariotti, Ilhem Nadia Rabehi, Congyang Zhang, Xiaomin Huo, Jiahao Zhang, Penghui Ji, Tianhao Wu, Tongtong Li, Shuai Yuan, Xiaomin Liu, Ting Guo, Chenfeng Ding, Hengyuan Wang, Annalisa Bruno, Luis K. Ono, Yabing Qi","doi":"10.1002/eem2.12825","DOIUrl":"https://doi.org/10.1002/eem2.12825","url":null,"abstract":"Self-assembled monolayers (SAMs) are widely used as hole transport materials in inverted perovskite solar cells, offering low parasitic absorption and suitability for semitransparent and tandem solar cells. While SAMs have shown to be promising in small-area devices (≤1 cm<sup>2</sup>), their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach. Here, we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz), one of the most common carbazole-based SAMs. The impact of these deposition methods on the device performance is investigated, revealing that the spray-coating technique yields higher device performance. Furthermore, our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules. In addition, we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods, which allow for thicker 2PACz deposition. It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"26 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Liu, Ruohan Yu, Xiaoqi Luo, Di Wu, Dongxue Wang, Jinsong Wu, Liang Zhou, Jinping Liu, Jianlong Xia
Organic electrode materials (OEMs) constitute an attractive class of energy storage materials for potassium-ion batteries, but their application is severely hindered by sluggish kinetics and limited capacities. Herein, inorganic molecules covalent combination strategy is proposed to drive advanced potassium organic batteries. Specifically, molecular selenium, possessing high potential of conductivity and electroactivity, is covalently bonded with organic matrix, that is symmetrical selenophene-annulated dipolyperylene diimide (PDI2-2Se), is designed to verify the feasibility. The inorganic-anchored OEM (PDI2-2Se) can be electrochemically activated to form organic (PDI2 matrix)–inorganic (Se) hybrids during initial cycles. State-of-the-art 3D tomography reveals that a “mutual-accelerating” effect was realized, that is, the 10-nm Se quantum dots, possessing high conductivity, facilitate charge transfer in organics as well store K+-ions, and organic PDI2 matrix benefits the encapsulation of Se, thereby suppressing shuttle effect and volume fluctuation during cycling, endowing resulting PDI2/Se hybrids with both high-rate capacities and longevity. The concept of inorganic-configurated OEM through covalent bonds, in principle, can also be extended to design novel functional organic-redox electrodes for other high-performance secondary batteries.
{"title":"Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries","authors":"Hang Liu, Ruohan Yu, Xiaoqi Luo, Di Wu, Dongxue Wang, Jinsong Wu, Liang Zhou, Jinping Liu, Jianlong Xia","doi":"10.1002/eem2.12785","DOIUrl":"https://doi.org/10.1002/eem2.12785","url":null,"abstract":"Organic electrode materials (OEMs) constitute an attractive class of energy storage materials for potassium-ion batteries, but their application is severely hindered by sluggish kinetics and limited capacities. Herein, inorganic molecules covalent combination strategy is proposed to drive advanced potassium organic batteries. Specifically, molecular selenium, possessing high potential of conductivity and electroactivity, is covalently bonded with organic matrix, that is symmetrical selenophene-annulated dipolyperylene diimide (PDI2-2Se), is designed to verify the feasibility. The inorganic-anchored OEM (PDI2-2Se) can be electrochemically activated to form organic (PDI2 matrix)–inorganic (Se) hybrids during initial cycles. State-of-the-art 3D tomography reveals that a “mutual-accelerating” effect was realized, that is, the 10-nm Se quantum dots, possessing high conductivity, facilitate charge transfer in organics as well store K<sup>+</sup>-ions, and organic PDI2 matrix benefits the encapsulation of Se, thereby suppressing shuttle effect and volume fluctuation during cycling, endowing resulting PDI2/Se hybrids with both high-rate capacities and longevity. The concept of inorganic-configurated OEM through covalent bonds, in principle, can also be extended to design novel functional organic-redox electrodes for other high-performance secondary batteries.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"55 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong Il Kim, Hee Bin Jeong, Jungmoon Lim, Hyeong Seop Jeong, Min Kyeong Kim, Sangyeon Pak, Sanghyo Lee, Geon-Hyoung An, Sang-Soo Chee, Jin Pyo Hong, SeungNam Cha, John Hong
Achieving high-performance aqueous zinc-ion batteries requires addressing the challenges associated with the stability of zinc metal anodes, particularly the formation of inhomogeneous zinc dendrites during cycling and unstable surface electrochemistry. This study introduces a practical method for scattering untreated bulk hexagonal boron nitride (h-BN) particles onto the zinc anode surface. During cycling, stabilized zinc fills the interstices of scattered h-BN, resulting in a more favorable (002) orientation. Consequently, zinc dendrite formation is effectively suppressed, leading to improved electrochemical stability. The zinc with scattered h-BN in a symmetric cell configuration maintains stability 10 times longer than the bare zinc symmetric cell, lasting 500 hours. Furthermore, in a full cell configuration with α-MnO2 cathode, increased H+ ion activity can effectively alter the major redox kinetics of cycling due to the presence of scattered h-BN on the zinc anode. This shift in H+ ion activity lowers the overall redox potential, resulting in a discharge capacity retention of 96.1% for 300 cycles at a charge/discharge rate of 0.5 A g−1. This study highlights the crucial role of surface modification, and the innovative use of bulk h-BN provides a practical and effective solution for improving the performance and stability.
{"title":"A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics","authors":"Dong Il Kim, Hee Bin Jeong, Jungmoon Lim, Hyeong Seop Jeong, Min Kyeong Kim, Sangyeon Pak, Sanghyo Lee, Geon-Hyoung An, Sang-Soo Chee, Jin Pyo Hong, SeungNam Cha, John Hong","doi":"10.1002/eem2.12826","DOIUrl":"https://doi.org/10.1002/eem2.12826","url":null,"abstract":"Achieving high-performance aqueous zinc-ion batteries requires addressing the challenges associated with the stability of zinc metal anodes, particularly the formation of inhomogeneous zinc dendrites during cycling and unstable surface electrochemistry. This study introduces a practical method for scattering untreated bulk hexagonal boron nitride (h-BN) particles onto the zinc anode surface. During cycling, stabilized zinc fills the interstices of scattered h-BN, resulting in a more favorable (002) orientation. Consequently, zinc dendrite formation is effectively suppressed, leading to improved electrochemical stability. The zinc with scattered h-BN in a symmetric cell configuration maintains stability 10 times longer than the bare zinc symmetric cell, lasting 500 hours. Furthermore, in a full cell configuration with α-MnO<sub>2</sub> cathode, increased H<sup>+</sup> ion activity can effectively alter the major redox kinetics of cycling due to the presence of scattered h-BN on the zinc anode. This shift in H<sup>+</sup> ion activity lowers the overall redox potential, resulting in a discharge capacity retention of 96.1% for 300 cycles at a charge/discharge rate of 0.5 A g<sup>−1</sup>. This study highlights the crucial role of surface modification, and the innovative use of bulk h-BN provides a practical and effective solution for improving the performance and stability.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"18 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Mobarak Hossain Polash, Matthew Stone, Songxue Chi, Daryoosh Vashaee
Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade-off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit (zT) without compromising electrical conductivity, using temperature-driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped-manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 μV K−1, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower. These findings, validated by inelastic neutron scattering, X-ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high-performance spin-driven thermoelectric materials.
{"title":"Designing Spin-Crossover Systems to Enhance Thermopower and Thermoelectric Figure-of-Merit in Paramagnetic Materials","authors":"Md Mobarak Hossain Polash, Matthew Stone, Songxue Chi, Daryoosh Vashaee","doi":"10.1002/eem2.12822","DOIUrl":"https://doi.org/10.1002/eem2.12822","url":null,"abstract":"Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade-off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit (zT) without compromising electrical conductivity, using temperature-driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped-manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 μV K<sup>−1</sup>, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower. These findings, validated by inelastic neutron scattering, X-ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high-performance spin-driven thermoelectric materials.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"07 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Koji Hiraoka, Kazuo Yamamoto, Takeshi Kobayashi, Tetsuo Sakamoto, Shiro Seki
Understanding the charge/discharge mechanism of batteries plays an important role in the development of high-performance systems, but extremely complicated reactions are involved. Because these complex phenomena are also bottlenecks for the establishment of all-solid-state batteries (ASSB), we conducted multi-scale analysis using combined multi-measurement techniques, to directly observe charge/discharge reactions at hierarchical scales for the oxide-type ASSB using Na as the carrier cation. In particular, all of measurement techniques are applied to cross-section ASSB in the same cell, to complementarily evaluate the elemental distributions and structural changes. From Operando scanning electron microscopy–energy-dispersive X-ray spectroscopy, the Na concentration in the electrode layers changes on the micrometer scale under charge/discharge reactions in the first cycle. Furthermore, Operando Raman spectroscopy reveal changes in the bonding states at the atomic scale in the active material, including changes in reversible structural changes. After cycling the ASSB, the elemental distributions are clearly observed along with the particle shapes and can reveal the Na migration mechanism at the nanometer scale, by time-of-flight secondary ion mass spectrometry. Therefore, this study can provide a fundamental and comprehensive understanding of the charge/discharge mechanism by observing reaction processes at multiple scales.
了解电池的充放电机理对开发高性能系统具有重要作用,但其中涉及极其复杂的反应。由于这些复杂的现象也是建立全固态电池(ASSB)的瓶颈,我们采用多种测量技术进行了多尺度分析,直接观察了以 Na 为载体阳离子的氧化物型 ASSB 在分层尺度上的充放电反应。特别是,所有测量技术都应用于同一电池中的横截面 ASSB,以补充评估元素分布和结构变化。通过操作扫描电子显微镜-能量色散 X 射线光谱分析,在第一个周期的充放电反应中,电极层中 Na 的浓度在微米尺度上发生了变化。此外,Operando 拉曼光谱显示了活性材料中原子尺度的键合状态变化,包括可逆结构变化。通过飞行时间二次离子质谱法,可以清晰地观察到 ASSB 循环后的元素分布和颗粒形状,并揭示纳米尺度的 Na 迁移机制。因此,这项研究可以通过观察多种尺度的反应过程,从根本上全面了解充放电机制。
{"title":"Multi-Scale Analysis Combined Operando Elemental/Spectroscopic Measurement Techniques in Oxide-Type All-Solid-State Na Batteries","authors":"Koji Hiraoka, Kazuo Yamamoto, Takeshi Kobayashi, Tetsuo Sakamoto, Shiro Seki","doi":"10.1002/eem2.12821","DOIUrl":"https://doi.org/10.1002/eem2.12821","url":null,"abstract":"Understanding the charge/discharge mechanism of batteries plays an important role in the development of high-performance systems, but extremely complicated reactions are involved. Because these complex phenomena are also bottlenecks for the establishment of all-solid-state batteries (ASSB), we conducted multi-scale analysis using combined multi-measurement techniques, to directly observe charge/discharge reactions at hierarchical scales for the oxide-type ASSB using Na as the carrier cation. In particular, all of measurement techniques are applied to cross-section ASSB in the same cell, to complementarily evaluate the elemental distributions and structural changes. From <i>Operando</i> scanning electron microscopy–energy-dispersive X-ray spectroscopy, the Na concentration in the electrode layers changes on the micrometer scale under charge/discharge reactions in the first cycle. Furthermore, <i>Operando</i> Raman spectroscopy reveal changes in the bonding states at the atomic scale in the active material, including changes in reversible structural changes. After cycling the ASSB, the elemental distributions are clearly observed along with the particle shapes and can reveal the Na migration mechanism at the nanometer scale, by time-of-flight secondary ion mass spectrometry. Therefore, this study can provide a fundamental and comprehensive understanding of the charge/discharge mechanism by observing reaction processes at multiple scales.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"83 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyungjin Lee, Amey Nimkar, Hyeonjun Lee, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Munseok S. Chae
Aqueous batteries with metal anodes exhibit robust anodic capacities, but their energy densities are low because of the limited potential stabilities of aqueous electrolyte solutions. Current metal options, such as Zn and Al, pose a dilemma: Zn lacks a sufficiently low redox potential, whereas Al tends to be strongly oxidized in aqueous environments. Our investigation introduces a novel rechargeable aqueous battery system based on Mn as the anode. We examine the effects of anions, electrolyte concentration, and diverse cathode chemistries. Notably, the ClO4-based electrolyte solution exhibits improved deposition and dissolution efficiencies. Although stainless steel (SS 316 L) and Ni are stable current collectors for cathodes, they display limitations as anodes. However, using Ti as the anode resulted in increased Mn deposition and dissolution efficiencies. Moreover, we evaluate this system using various cathode materials, including Mn-intercalation-based inorganic (Ag0.33V2O5) and organic (perylenetetracarboxylic dianhydride) cathodes and an anion-intercalation-chemistry (coronene)-based cathode. These configurations yield markedly higher output potentials compared to those of Zn metal batteries, highlighting the potential for an augmented energy density when using an Mn anode. This study outlines a systematic approach for use in optimizing metal anodes in Mn metal batteries, unlocking novel prospects for Mn-based batteries with diverse cathode chemistries.
{"title":"New Mn Electrochemistry for Rechargeable Aqueous Batteries: Promising Directions Based on Preliminary Results","authors":"Hyungjin Lee, Amey Nimkar, Hyeonjun Lee, Netanel Shpigel, Daniel Sharon, Seung-Tae Hong, Munseok S. Chae","doi":"10.1002/eem2.12823","DOIUrl":"https://doi.org/10.1002/eem2.12823","url":null,"abstract":"Aqueous batteries with metal anodes exhibit robust anodic capacities, but their energy densities are low because of the limited potential stabilities of aqueous electrolyte solutions. Current metal options, such as Zn and Al, pose a dilemma: Zn lacks a sufficiently low redox potential, whereas Al tends to be strongly oxidized in aqueous environments. Our investigation introduces a novel rechargeable aqueous battery system based on Mn as the anode. We examine the effects of anions, electrolyte concentration, and diverse cathode chemistries. Notably, the ClO<sub>4</sub>-based electrolyte solution exhibits improved deposition and dissolution efficiencies. Although stainless steel (SS 316 L) and Ni are stable current collectors for cathodes, they display limitations as anodes. However, using Ti as the anode resulted in increased Mn deposition and dissolution efficiencies. Moreover, we evaluate this system using various cathode materials, including Mn-intercalation-based inorganic (Ag<sub>0.33</sub>V<sub>2</sub>O<sub>5</sub>) and organic (perylenetetracarboxylic dianhydride) cathodes and an anion-intercalation-chemistry (coronene)-based cathode. These configurations yield markedly higher output potentials compared to those of Zn metal batteries, highlighting the potential for an augmented energy density when using an Mn anode. This study outlines a systematic approach for use in optimizing metal anodes in Mn metal batteries, unlocking novel prospects for Mn-based batteries with diverse cathode chemistries.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"32 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stretchability is a crucial property of flexible all-in-one supercapacitors. This work reports a novel hydrogel electrolyte, polyacrylamide-divinylbenzene-Li2SO4 (PAM-DVB-Li) synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li2SO4 aqueous solution by micelles and followed γ-radiation induced polymerization and crosslinking. The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627 ± 241% stretchability and high ionic conductivity of 53 ± 3 mS cm−1. By in situ polymerization of conducting polyaniline (PANI) on the PAM-DVB-Li hydrogel electrolyte, a novel all-in-one supercapacitor, PAM-DVB-Li/PANI, with highly integrated structure is prepared further. Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure, the device exhibits a high specific capacitance of 469 mF cm−2 at 0.5 mA cm−2, good cyclic stability, safety, and deformation damage resistance. More importantly, the device demonstrates a superior tensile resistance (working normally under no more than 300% strain, capacitance stability in 1000 cycles of 1000% stretching and 10 cycles of 3000% stretching) far beyond that of other all-in-one supercapacitors. This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.
{"title":"An Ultrastretchable and Highly Conductive Hydrogel Electrolyte for All-in-One Flexible Supercapacitor With Extreme Tensile Resistance","authors":"Yichen Li, Xuyan Wei, Fan Jiang, Yue Wang, Mingshu Xie, Jing Peng, Congwei Yi, Jiuqiang Li, Maolin Zhai","doi":"10.1002/eem2.12820","DOIUrl":"https://doi.org/10.1002/eem2.12820","url":null,"abstract":"Stretchability is a crucial property of flexible all-in-one supercapacitors. This work reports a novel hydrogel electrolyte, polyacrylamide-divinylbenzene-Li<sub>2</sub>SO<sub>4</sub> (PAM-DVB-Li) synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li<sub>2</sub>SO<sub>4</sub> aqueous solution by micelles and followed γ-radiation induced polymerization and crosslinking. The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627 ± 241% stretchability and high ionic conductivity of 53 ± 3 mS cm<sup>−1</sup>. By in situ polymerization of conducting polyaniline (PANI) on the PAM-DVB-Li hydrogel electrolyte, a novel all-in-one supercapacitor, PAM-DVB-Li/PANI, with highly integrated structure is prepared further. Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure, the device exhibits a high specific capacitance of 469 mF cm<sup>−2</sup> at 0.5 mA cm<sup>−2</sup>, good cyclic stability, safety, and deformation damage resistance. More importantly, the device demonstrates a superior tensile resistance (working normally under no more than 300% strain, capacitance stability in 1000 cycles of 1000% stretching and 10 cycles of 3000% stretching) far beyond that of other all-in-one supercapacitors. This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"120 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel Pameté, Jean G. A. Ruthes, Marius Hermesdorf, Anna Seltmann, Delvina J. Tarimo, Desirée Leistenschneider, Volker Presser
Supercapacitors are efficient and versatile energy storage devices, offering remarkable power density, fast charge/discharge rates, and exceptional cycle life. As research continues to push the boundaries of their performance, electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors. Herein, we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors. Notably, our study explores the performance of these electrodes in three different types of electrolytes: organic, ionic liquids, and quasi-solid states. By examining the impact of dry electrode processing on various electrode and electrolyte systems, we show valuable insights into the versatility and efficacy of this technique. The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes, with a lifespan extension of +45% in organic, +192% in ionic liquids, and +84% in quasi-solid electrolytes. Moreover, the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs, enhancing energy storage capacities within compact form factors. Notably, dry electrode-prepared supercapacitors outperformed their wet electrode counterparts, exhibiting a higher energy density of 6.1 Wh cm−3 compared with 4.7 Wh cm−3 at a high power density of 195 W cm−3, marking a substantial 28% energy improvement in the quasi-solid electrolyte.
{"title":"Dry Electrode Processing for Free-Standing Supercapacitor Electrodes with Longer Life, Higher Volumetric Outputs, and Reduced Environmental Impact","authors":"Emmanuel Pameté, Jean G. A. Ruthes, Marius Hermesdorf, Anna Seltmann, Delvina J. Tarimo, Desirée Leistenschneider, Volker Presser","doi":"10.1002/eem2.12775","DOIUrl":"https://doi.org/10.1002/eem2.12775","url":null,"abstract":"Supercapacitors are efficient and versatile energy storage devices, offering remarkable power density, fast charge/discharge rates, and exceptional cycle life. As research continues to push the boundaries of their performance, electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors. Herein, we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors. Notably, our study explores the performance of these electrodes in three different types of electrolytes: organic, ionic liquids, and quasi-solid states. By examining the impact of dry electrode processing on various electrode and electrolyte systems, we show valuable insights into the versatility and efficacy of this technique. The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes, with a lifespan extension of +45% in organic, +192% in ionic liquids, and +84% in quasi-solid electrolytes. Moreover, the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs, enhancing energy storage capacities within compact form factors. Notably, dry electrode-prepared supercapacitors outperformed their wet electrode counterparts, exhibiting a higher energy density of 6.1 Wh cm<sup>−3</sup> compared with 4.7 Wh cm<sup>−3</sup> at a high power density of 195 W cm<sup>−3</sup>, marking a substantial 28% energy improvement in the quasi-solid electrolyte.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"22 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joo Hyung Park, Yonghee Jo, Ara Cho, Inyoung Jeong, Jin Gi An, Kihwan Kim, Seung Kyu Ahn, Donghyeop Shin, Jun-Sik Cho
Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance, as in a wide bandgap Zn1-xMgxO (ZMO) to replace the CdS buffer in Cu(In1-x,Gax)Se2 (CIGSe) thin-film solar cell structure. ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content, which can be helpful in attaining a suitable conduction band offset. Hence, compared to the fixed and limited bandgap of a CdS buffer, a ZMO buffer may provide advantages in Voc and Jsc based on its controllable and wide bandgap, even with a relatively wider bandgap CIGSe thin-film solar cell. In addition, to solve problems with the defect sites at the ZMO/CIGSe junction interface, a few-nanometer ZnS layer is employed for heterojunction interface passivation, forming a ZMO/ZnS buffer structure by atomic layer deposition (ALD). Finally, a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap (1.25 eV) and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%, which exhibited a higher performance than the CdS counterpart.
{"title":"Enhancement of Cd-Free All-Dry-Processed Cu(In1-x,Gax)Se2 Thin-Film Solar Cells by Simultaneous Adoption of an Enlarged Bandgap Absorber and Tunable Bandgap Zn1-xMgxO Buffer","authors":"Joo Hyung Park, Yonghee Jo, Ara Cho, Inyoung Jeong, Jin Gi An, Kihwan Kim, Seung Kyu Ahn, Donghyeop Shin, Jun-Sik Cho","doi":"10.1002/eem2.12796","DOIUrl":"https://doi.org/10.1002/eem2.12796","url":null,"abstract":"Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance, as in a wide bandgap Zn<sub>1-x</sub>Mg<sub>x</sub>O (ZMO) to replace the CdS buffer in Cu(In<sub>1-x</sub>,Ga<sub>x</sub>)Se<sub>2</sub> (CIGSe) thin-film solar cell structure. ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content, which can be helpful in attaining a suitable conduction band offset. Hence, compared to the fixed and limited bandgap of a CdS buffer, a ZMO buffer may provide advantages in <i>V</i><sub>oc</sub> and <i>J</i><sub>sc</sub> based on its controllable and wide bandgap, even with a relatively wider bandgap CIGSe thin-film solar cell. In addition, to solve problems with the defect sites at the ZMO/CIGSe junction interface, a few-nanometer ZnS layer is employed for heterojunction interface passivation, forming a ZMO/ZnS buffer structure by atomic layer deposition (ALD). Finally, a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap (1.25 eV) and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%, which exhibited a higher performance than the CdS counterpart.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"87 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}