{"title":"Low-Emission Combustion Chambers of GTU: Modern Trends, Diagnostics, and Optimization (Review)","authors":"L. M. Chikishev, D. M. Markovich","doi":"10.1134/S0040601524010014","DOIUrl":null,"url":null,"abstract":"<p>A brief overview of the designs of low-emission gas turbine-type combustion chambers is given using the example of aircraft propulsion systems. The most promising technology that helps reduce emissions of harmful substances is the combustion of a lean premixed fuel-air mixture, but its use is limited by nonstationary phenomena that have a significant impact on flame stabilization and lead to the occurrence of thermoacoustic resonance. Currently, this technology is implemented for high-power engines by only two companies: General Electric and Rolls-Royce. Work on creating a high-thrust engine in Russia is being carried out at AO UEC-Aviadvigatel within the framework of the PD-35 program. The problems of developing low-emission combustion chambers for gas pumping units are successfully solved at AO UEC-Aviadvigatel together with the Baranov Central Institute of Aviation Motor Development (GTU-16P). One of the key areas of energy development is also the development of high-power gas turbines of the classes GTE-65, GTE-170 (PAO Power Machines), GTD-110M (ODK Saturn), and here it is necessary to solve the same problems as for gas turbine engines. The most pressing problems are predicting the occurrence of thermoacoustic self-oscillations of gas in combustion chambers and controlling them using feedback both in nominal modes and in low-power modes. A review of technologies using low-emission combustion chambers is presented, and the current state of experimental studies of the flow structure and transfer processes in model combustion chambers is considered. Examples of advanced experimental stands that simulate flow and combustion in gas turbine-type combustion chambers are given and the necessary operating parameters and the technical solutions used are indicated that allow efficient measurements using modern optical diagnostic methods.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 1","pages":"44 - 64"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A brief overview of the designs of low-emission gas turbine-type combustion chambers is given using the example of aircraft propulsion systems. The most promising technology that helps reduce emissions of harmful substances is the combustion of a lean premixed fuel-air mixture, but its use is limited by nonstationary phenomena that have a significant impact on flame stabilization and lead to the occurrence of thermoacoustic resonance. Currently, this technology is implemented for high-power engines by only two companies: General Electric and Rolls-Royce. Work on creating a high-thrust engine in Russia is being carried out at AO UEC-Aviadvigatel within the framework of the PD-35 program. The problems of developing low-emission combustion chambers for gas pumping units are successfully solved at AO UEC-Aviadvigatel together with the Baranov Central Institute of Aviation Motor Development (GTU-16P). One of the key areas of energy development is also the development of high-power gas turbines of the classes GTE-65, GTE-170 (PAO Power Machines), GTD-110M (ODK Saturn), and here it is necessary to solve the same problems as for gas turbine engines. The most pressing problems are predicting the occurrence of thermoacoustic self-oscillations of gas in combustion chambers and controlling them using feedback both in nominal modes and in low-power modes. A review of technologies using low-emission combustion chambers is presented, and the current state of experimental studies of the flow structure and transfer processes in model combustion chambers is considered. Examples of advanced experimental stands that simulate flow and combustion in gas turbine-type combustion chambers are given and the necessary operating parameters and the technical solutions used are indicated that allow efficient measurements using modern optical diagnostic methods.