Nanosecond recombination lifetimes and spin relaxation times in (110) InGaAs/AlGaAs quantum wells at room temperature

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, APPLIED Applied Physics Express Pub Date : 2024-03-06 DOI:10.35848/1882-0786/ad2907
Satoshi Iba and Yuzo Ohno
{"title":"Nanosecond recombination lifetimes and spin relaxation times in (110) InGaAs/AlGaAs quantum wells at room temperature","authors":"Satoshi Iba and Yuzo Ohno","doi":"10.35848/1882-0786/ad2907","DOIUrl":null,"url":null,"abstract":"Quantum wells in InGaAs/AlGaAs with (110) orientation are attractive as active layers in spin-controlled lasers with circularly polarized emission, while the spin relaxation time is expected to be larger than for (100)-oriented layers. However, the hitherto reported recombination lifetimes (40 ps) and spin relaxation times (440 ps) of (110) InGaAs/AlGaAs structures are insufficient. Here it is shown that higher growth temperatures and higher V/III beam equivalent pressure ratios than previously used in crystal growth by molecular beam epitaxy lead to recombination and spin relaxation times in the nanosecond range at RT, meeting the requirements for application in spin lasers.","PeriodicalId":8093,"journal":{"name":"Applied Physics Express","volume":"99 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad2907","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum wells in InGaAs/AlGaAs with (110) orientation are attractive as active layers in spin-controlled lasers with circularly polarized emission, while the spin relaxation time is expected to be larger than for (100)-oriented layers. However, the hitherto reported recombination lifetimes (40 ps) and spin relaxation times (440 ps) of (110) InGaAs/AlGaAs structures are insufficient. Here it is shown that higher growth temperatures and higher V/III beam equivalent pressure ratios than previously used in crystal growth by molecular beam epitaxy lead to recombination and spin relaxation times in the nanosecond range at RT, meeting the requirements for application in spin lasers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温下 (110) InGaAs/AlGaAs 量子阱中的纳秒级重组寿命和自旋弛豫时间
具有(110)取向的 InGaAs/AlGaAs 量子阱作为具有圆偏振发射的自旋控制激光器的有源层具有吸引力,而自旋弛豫时间预计比(100)取向层更长。然而,迄今为止所报道的 (110) InGaAs/AlGaAs 结构的重组寿命(40 ps)和自旋弛豫时间(440 ps)是不够的。这里的研究表明,与以前通过分子束外延方法生长晶体时使用的温度和 V/III 束等效压力比相比,更高的生长温度和 V/III 束等效压力比可以使晶体在 RT 时的重组和自旋弛豫时间达到纳秒级,从而满足自旋激光器的应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Express
Applied Physics Express 物理-物理:应用
CiteScore
4.80
自引率
8.70%
发文量
310
审稿时长
1.2 months
期刊介绍: Applied Physics Express (APEX) is a letters journal devoted solely to rapid dissemination of up-to-date and concise reports on new findings in applied physics. The motto of APEX is high scientific quality and prompt publication. APEX is a sister journal of the Japanese Journal of Applied Physics (JJAP) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
期刊最新文献
Sensing and frequency selecting with toroidal resonance in metasurface A unified global model accompanied with a voltage and current sensor for low-pressure capacitively coupled RF discharge Degradation mechanism of degenerate n-GaN ohmic contact induced by ion beam etching damage Thermoelectric measurements of nanomaterials by nanodiamond quantum thermometry Physical reservoir computing with visible-light signals using dye-sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1