Extraction of interfacial thermal resistance across an organic/semiconductor interface using optical-interference contactless thermometry

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, APPLIED Applied Physics Express Pub Date : 2024-03-06 DOI:10.35848/1882-0786/ad2b01
Jiawen Yu, Hiroaki Hanafusa and Seiichiro Higashi
{"title":"Extraction of interfacial thermal resistance across an organic/semiconductor interface using optical-interference contactless thermometry","authors":"Jiawen Yu, Hiroaki Hanafusa and Seiichiro Higashi","doi":"10.35848/1882-0786/ad2b01","DOIUrl":null,"url":null,"abstract":"We have developed an experimental method to extract interfacial thermal resistance (ITR) at an organic/semiconductor interface based on optical-interference contactless thermometry. The proposed technique was applied to a SU-8/SiC bilayer sample, and clear oscillations in reflectivity induced by optical interference during pulse heating and cooling were observed. After fitting the observed reflectivity waveform with simulation results by a two-dimensional (2D) double-layer heat conduction model and multi-reflection calculations, ITR was extracted as 190 mm2 K W−1, which resulted in a temperature drop of 11 K at the interface. Moreover, the 2D transient temperature distribution of the sample throughout pulse heating and cooling was obtained.","PeriodicalId":8093,"journal":{"name":"Applied Physics Express","volume":"13 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad2b01","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed an experimental method to extract interfacial thermal resistance (ITR) at an organic/semiconductor interface based on optical-interference contactless thermometry. The proposed technique was applied to a SU-8/SiC bilayer sample, and clear oscillations in reflectivity induced by optical interference during pulse heating and cooling were observed. After fitting the observed reflectivity waveform with simulation results by a two-dimensional (2D) double-layer heat conduction model and multi-reflection calculations, ITR was extracted as 190 mm2 K W−1, which resulted in a temperature drop of 11 K at the interface. Moreover, the 2D transient temperature distribution of the sample throughout pulse heating and cooling was obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光干涉非接触测温法提取有机物/半导体界面的界面热阻
我们开发了一种基于光干涉非接触测温法提取有机物/半导体界面热阻(ITR)的实验方法。我们将所提出的技术应用于 SU-8/SiC 双层样品,观察到在脉冲加热和冷却过程中光干涉引起的反射率的明显振荡。将观察到的反射率波形与二维(2D)双层热传导模型和多反射计算的模拟结果拟合后,提取出的 ITR 为 190 mm2 K W-1,这导致界面处的温度下降了 11 K。此外,还获得了样品在整个脉冲加热和冷却过程中的二维瞬态温度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Express
Applied Physics Express 物理-物理:应用
CiteScore
4.80
自引率
8.70%
发文量
310
审稿时长
1.2 months
期刊介绍: Applied Physics Express (APEX) is a letters journal devoted solely to rapid dissemination of up-to-date and concise reports on new findings in applied physics. The motto of APEX is high scientific quality and prompt publication. APEX is a sister journal of the Japanese Journal of Applied Physics (JJAP) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
期刊最新文献
Sensing and frequency selecting with toroidal resonance in metasurface A unified global model accompanied with a voltage and current sensor for low-pressure capacitively coupled RF discharge Degradation mechanism of degenerate n-GaN ohmic contact induced by ion beam etching damage Thermoelectric measurements of nanomaterials by nanodiamond quantum thermometry Physical reservoir computing with visible-light signals using dye-sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1