{"title":"1H, 13C and 15N backbone resonance assignments of hepatocyte nuclear factor-1-beta (HNF1β) POUS and POUHD","authors":"Sayaka Hokazono, Eri Imagawa, Daishi Hirano, Takahisa Ikegami, Kimihiko Oishi, Tsuyoshi Konuma","doi":"10.1007/s12104-024-10168-4","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatocyte nuclear factor 1β (HNF1β) is a transcription factor that plays a key role in the development and function of the liver, pancreas, and kidney. HNF1β plays a key role in early vertebrate development and the morphogenesis of these organs. In humans, heterozygous mutations in the <i>HNF1B</i> gene can result in organ dysplasia, making it the most common cause of developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. Pathogenic variants in the <i>HNF1B</i> gene are known to cause various diseases, including maturity-onset diabetes of the young and developmental renal diseases. This study presents the backbone resonance assignments of HNF1β POU<sub>S</sub> and POU<sub>HD</sub> domains, which are highly conserved domains required for the recognition of double-stranded DNA. Our data will be useful for NMR studies to verify the altered structures and functions of mutant <i>HNF1B</i> proteins that can induce developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. This study will provide the structural basis for future studies to elucidate the molecular mechanisms underlying how mutations in HNF1β cause diseases.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"59 - 63"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10168-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is a transcription factor that plays a key role in the development and function of the liver, pancreas, and kidney. HNF1β plays a key role in early vertebrate development and the morphogenesis of these organs. In humans, heterozygous mutations in the HNF1B gene can result in organ dysplasia, making it the most common cause of developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. Pathogenic variants in the HNF1B gene are known to cause various diseases, including maturity-onset diabetes of the young and developmental renal diseases. This study presents the backbone resonance assignments of HNF1β POUS and POUHD domains, which are highly conserved domains required for the recognition of double-stranded DNA. Our data will be useful for NMR studies to verify the altered structures and functions of mutant HNF1B proteins that can induce developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. This study will provide the structural basis for future studies to elucidate the molecular mechanisms underlying how mutations in HNF1β cause diseases.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.