首页 > 最新文献

Biomolecular NMR Assignments最新文献

英文 中文
NMR 1H, 13C, 15N backbone resonance assignments of wild-type human K-Ras and its oncogenic mutants G12D and G12C bound to GTP 野生型人K-Ras及其与GTP结合的致癌突变体G12D和G12C的NMR 1H、13C、15N骨架共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-11-10 DOI: 10.1007/s12104-023-10162-2
Chunhua Yuan, Alexandar L. Hansen, Lei Bruschweiler-Li, Rafael Brüschweiler

Human K-Ras protein, which is a member of the GTPase Ras family, hydrolyzes GTP to GDP and concomitantly converts from its active to its inactive state. It is a key oncoprotein, because several mutations, particularly those at residue position 12, occur with a high frequency in a wide range of human cancers. The K-Ras protein is therefore an important target for developing therapeutic anti-cancer agents. In this work we report the almost complete sequence-specific resonance assignments of wild-type and the oncogenic G12C and G12D mutants in the GTP-complexed active forms, including the functionally important Switch I and Switch II regions. These assignments serve as the basis for a comprehensive functional dynamics study of wild-type K-Ras and its G12 mutants.

人类K-Ras蛋白是GTP酶Ras家族的一员,它将GTP水解为GDP,并同时从活性状态转化为非活性状态。它是一种关键的癌蛋白,因为一些突变,特别是残基位置12的突变,在广泛的人类癌症中发生频率很高。因此,K-Ras蛋白是开发治疗性抗癌剂的重要靶点。在这项工作中,我们报道了GTP复合活性形式的野生型和致癌G12C和G12D突变体的几乎完整的序列特异性共振分配,包括功能重要的开关I和开关II区域。这些任务为野生型K-Ras及其G12突变体的全面功能动力学研究奠定了基础。
{"title":"NMR 1H, 13C, 15N backbone resonance assignments of wild-type human K-Ras and its oncogenic mutants G12D and G12C bound to GTP","authors":"Chunhua Yuan,&nbsp;Alexandar L. Hansen,&nbsp;Lei Bruschweiler-Li,&nbsp;Rafael Brüschweiler","doi":"10.1007/s12104-023-10162-2","DOIUrl":"10.1007/s12104-023-10162-2","url":null,"abstract":"<div><p>Human K-Ras protein, which is a member of the GTPase Ras family, hydrolyzes GTP to GDP and concomitantly converts from its active to its inactive state. It is a key oncoprotein, because several mutations, particularly those at residue position 12, occur with a high frequency in a wide range of human cancers. The K-Ras protein is therefore an important target for developing therapeutic anti-cancer agents. In this work we report the almost complete sequence-specific resonance assignments of wild-type and the oncogenic G12C and G12D mutants in the GTP-complexed active forms, including the functionally important Switch I and Switch II regions. These assignments serve as the basis for a comprehensive functional dynamics study of wild-type K-Ras and its G12 mutants.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"7 - 13"},"PeriodicalIF":0.8,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72012975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
13C and 15N resonance assignments of alpha synuclein fibrils amplified from Lewy Body Dementia tissue Lewy体痴呆组织中α-突触核蛋白原纤维的13C和15N共振定位
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-11-03 DOI: 10.1007/s12104-023-10156-0
Alexander M. Barclay, Dhruva D. Dhavale, Collin G. Borcik, Moses H. Milchberg, Paul T. Kotzbauer, Chad M. Rienstra

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.

α-突触核蛋白纤维蛋白(Asyn)与帕金森病、路易体痴呆和多系统萎缩的发病机制有关。已经通过固态NMR研究了多种形式的Asyn原纤维,并且已经报道了共振分配。在这里,我们报道了一组新的13C,15N分配,这是通过从一名被诊断为路易体痴呆的患者死后脑组织中扩增获得的原纤维所特有的。
{"title":"13C and 15N resonance assignments of alpha synuclein fibrils amplified from Lewy Body Dementia tissue","authors":"Alexander M. Barclay,&nbsp;Dhruva D. Dhavale,&nbsp;Collin G. Borcik,&nbsp;Moses H. Milchberg,&nbsp;Paul T. Kotzbauer,&nbsp;Chad M. Rienstra","doi":"10.1007/s12104-023-10156-0","DOIUrl":"10.1007/s12104-023-10156-0","url":null,"abstract":"<div><p>Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of <sup>13</sup>C, <sup>15</sup>N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"281 - 286"},"PeriodicalIF":0.9,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift assignments of the catalytic domain of Staphylococcus aureus LytM 金黄色葡萄球菌LytM催化结构域的化学位移分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-11-02 DOI: 10.1007/s12104-023-10161-3
Helena Tossavainen, Ilona Pitkänen, Lina Antenucci, Chandan Thapa, Perttu Permi

S. aureus resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called “last-resort” drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant S. aureus is high. M23B family peptidoglycan hydrolases, enzymes that can kill S. aureus by cleaving glycine-glycine peptide bonds in S. aureus cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete 1H/13C/15N resonance assignment of the catalytic domain of LytM, residues 185–316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.

金黄色葡萄球菌对抗生素的耐药性迅速增加。耐甲氧西林金黄色葡萄球菌菌株可以同时对许多不同种类的抗生素产生耐药性,包括所谓的“最后手段”药物。耐药性使治疗复杂化,增加死亡率,并大大增加治疗成本。对抗(多重)耐药性金黄色葡萄球菌新药的需求很高。M23B家族肽聚糖水解酶是一种可以通过裂解金黄色葡萄球菌细胞壁中的甘氨酸-甘氨酸肽键来杀死金黄色葡萄菌的酶,由于其结合特异性和裂解活性,是药物开发的有吸引力的靶点。M23B酶溶酶体蛋白酶、LytU和LytM具有非常相似的催化结构域结构。然而,它们的裂解活性不同,这可能是由催化槽和周围环中的非保守残基或动力学差异引起的。我们在这里报道了LytM的催化结构域残基185-316的几乎完全的1H/13C/15N共振分配。化学位移数据允许对酶之间的结构和功能进行比较研究,对于了解这些水解酶如何降解细胞壁至关重要。
{"title":"Chemical shift assignments of the catalytic domain of Staphylococcus aureus LytM","authors":"Helena Tossavainen,&nbsp;Ilona Pitkänen,&nbsp;Lina Antenucci,&nbsp;Chandan Thapa,&nbsp;Perttu Permi","doi":"10.1007/s12104-023-10161-3","DOIUrl":"10.1007/s12104-023-10161-3","url":null,"abstract":"<div><p><i>S. aureus</i> resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called “last-resort” drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant <i>S. aureus</i> is high. M23B family peptidoglycan hydrolases, enzymes that can kill <i>S. aureus</i> by cleaving glycine-glycine peptide bonds in <i>S. aureus</i> cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N resonance assignment of the catalytic domain of LytM, residues 185–316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"1 - 5"},"PeriodicalIF":0.8,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71419439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: NMR resonance assignments of 18.5 kDa complex of Arabidopsis thaliana DRB7.2:DRB4 interaction domains 更正:拟南芥DRB7.2的18.5kDa复合物的NMR共振分配:DRB4相互作用结构域。
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-11-01 DOI: 10.1007/s12104-023-10152-4
Sneha Paturi, Mandar V. Deshmukh
{"title":"Correction to: NMR resonance assignments of 18.5 kDa complex of Arabidopsis thaliana DRB7.2:DRB4 interaction domains","authors":"Sneha Paturi,&nbsp;Mandar V. Deshmukh","doi":"10.1007/s12104-023-10152-4","DOIUrl":"10.1007/s12104-023-10152-4","url":null,"abstract":"","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"179 - 181"},"PeriodicalIF":0.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71419440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone NMR resonance assignments for the C terminal domain of the Streptococcus mutans adhesin P1 变形链球菌粘附素P1的C末端结构域的骨干NMR共振归属。
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-10-21 DOI: 10.1007/s12104-023-10158-y
Emily-Qingqing Peng, M. Luiza Caldas Nogueira, Gwladys Rivière, L. Jeannine Brady, Joanna R. Long

Adhesin P1 (aka AgI/II) plays a pivotal role in mediating Streptococcus mutans attachment in the oral cavity, as well as in regulating biofilm development and maturation. P1’s naturally occurring truncation product, Antigen II (AgII), adopts both soluble, monomeric and insoluble, amyloidogenic forms within the bacterial life cycle. Monomers are involved in important quaternary interactions that promote cell adhesion and the functional amyloid form promotes detachment of mature biofilms. The heterologous, 51-kD C123 construct comprises most of AgII and was previously characterized by X-ray crystallography. C123 contains three structurally homologous domains, C1, C2, and C3. NMR samples made using the original C123 construct, or its C3 domain, yielded moderately resolved NMR spectra. Using Alphafold, we re-analyzed the P1 sequence to better identify domain boundaries for C123, and in particular the C3 domain. We then generated a more tractable construct for NMR studies of the monomeric form, including quaternary interactions with other proteins. The addition of seven amino acids at the C-terminus greatly improved the spectral dispersion for C3 relative to the prior construct. Here we report the backbone NMR resonance assignments for the new construct and characterize some of its quaternary interactions. These data are in good agreement with the structure predicted by Alphafold, which contains additional β-sheet secondary structure compared to the C3 domain in the C123 crystal structure for a construct lacking the seven C-terminal amino acids. Its quaternary interactions with known protein partners are in good agreement with prior competitive binding assays. This construct can be used for further NMR studies, including protein-protein interaction studies and assessing the impact of environmental conditions on C3 structure and dynamics within C123 as it transitions from monomer to amyloid form.

粘附素P1(又名AgI/II)在介导变异链球菌在口腔中的附着以及调节生物膜的发育和成熟中起着关键作用。P1的天然截短产物抗原II(AgII)在细菌生命周期内采用可溶性、单体和不溶性淀粉样蛋白生成形式。单体参与重要的四元相互作用,促进细胞粘附,功能性淀粉样蛋白形式促进成熟生物膜的分离。异源的51kD C123构建体包含大部分AgII,并且先前通过X射线晶体学进行了表征。C123包含三个结构同源结构域,C1、C2和C3。使用原始C123构建体或其C3结构域制备的NMR样品产生中等分辨率的NMR光谱。使用Alphabold,我们重新分析了P1序列,以更好地识别C123的结构域边界,特别是C3结构域。然后,我们生成了一个更易于处理的结构体,用于单体形式的NMR研究,包括与其他蛋白质的四元相互作用。相对于先前的构建体,在C末端添加7个氨基酸大大改善了C3的光谱色散。在这里,我们报道了新结构的骨架核磁共振分配,并表征了它的一些四元相互作用。这些数据与Alphabold预测的结构非常一致,对于缺乏七个C末端氨基酸的构建体,与C123晶体结构中的C3结构域相比,Alphabold包含额外的β-片二级结构。其与已知蛋白质伴侣的四元相互作用与先前的竞争性结合测定非常一致。该构建体可用于进一步的NMR研究,包括蛋白质-蛋白质相互作用研究,并评估环境条件对C123从单体转变为淀粉样蛋白形式时C3结构和动力学的影响。
{"title":"Backbone NMR resonance assignments for the C terminal domain of the Streptococcus mutans adhesin P1","authors":"Emily-Qingqing Peng,&nbsp;M. Luiza Caldas Nogueira,&nbsp;Gwladys Rivière,&nbsp;L. Jeannine Brady,&nbsp;Joanna R. Long","doi":"10.1007/s12104-023-10158-y","DOIUrl":"10.1007/s12104-023-10158-y","url":null,"abstract":"<div><p>Adhesin P1 (aka AgI/II) plays a pivotal role in mediating <i>Streptococcus mutans</i> attachment in the oral cavity, as well as in regulating biofilm development and maturation. P1’s naturally occurring truncation product, Antigen II (AgII), adopts both soluble, monomeric and insoluble, amyloidogenic forms within the bacterial life cycle. Monomers are involved in important quaternary interactions that promote cell adhesion and the functional amyloid form promotes detachment of mature biofilms. The heterologous, 51-kD C123 construct comprises most of AgII and was previously characterized by X-ray crystallography. C123 contains three structurally homologous domains, C1, C2, and C3. NMR samples made using the original C123 construct, or its C3 domain, yielded moderately resolved NMR spectra. Using Alphafold, we re-analyzed the P1 sequence to better identify domain boundaries for C123, and in particular the C3 domain. We then generated a more tractable construct for NMR studies of the monomeric form, including quaternary interactions with other proteins. The addition of seven amino acids at the C-terminus greatly improved the spectral dispersion for C3 relative to the prior construct. Here we report the backbone NMR resonance assignments for the new construct and characterize some of its quaternary interactions. These data are in good agreement with the structure predicted by Alphafold, which contains additional β-sheet secondary structure compared to the C3 domain in the C123 crystal structure for a construct lacking the seven C-terminal amino acids. Its quaternary interactions with known protein partners are in good agreement with prior competitive binding assays. This construct can be used for further NMR studies, including protein-protein interaction studies and assessing the impact of environmental conditions on C3 structure and dynamics within C123 as it transitions from monomer to amyloid form.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"293 - 299"},"PeriodicalIF":0.9,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49672876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution NMR assignments and structure for the dimeric kinesin neck domain 二聚驱动蛋白颈结构域的溶液NMR分配和结构。
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-10-20 DOI: 10.1007/s12104-023-10159-x
Diana Seo, Richard A. Kammerer, Andrei T. Alexandrescu

Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report 1H, 15N, and 13C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad a and d positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with β-strand propensity— the β-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4–6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.

Kinesin是一种运动蛋白,由两条重链和两条轻链组成,沿着细胞骨架微管丝网络运输货物。重链有一个颈部结构域,连接负责沿着微管行走的ATP酶运动头,以及结合货物的茎和随后的尾部结构域。颈部结构域由一个卷曲的大肠杆菌同源二聚体组成,该二聚体具有大约五个七肽重复序列,前面有一个连接到ATP酶头部的连接区。在这里,我们报道了来自大鼠同种型Kif5c的驱动蛋白颈结构域的1H、15N和13C NMR分配和溶液结构。通过明确地将庚烷a和d位置之间的侧链NOE分配给链间接触,促进了同源二聚体的NMR结构的计算,因为这些位置相距太远,无法在单体中产生侧链接触。二聚体卷曲线圈NMR结构类似于先前描述的X射线结构,而连接体区域在溶液中是无序的,但包含一个具有β链倾向的短片段——β-连接体。只有盘管受到溶剂交换保护,氢交换的∆G值约为4-6 kcal/mol。氢键α-螺旋结构的高稳定性使得螺旋线圈的拉开不太可能参与驱动蛋白行走。相反,连接区充当驱动蛋白头部和颈部之间的柔性铰链。
{"title":"Solution NMR assignments and structure for the dimeric kinesin neck domain","authors":"Diana Seo,&nbsp;Richard A. Kammerer,&nbsp;Andrei T. Alexandrescu","doi":"10.1007/s12104-023-10159-x","DOIUrl":"10.1007/s12104-023-10159-x","url":null,"abstract":"<div><p>Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad <i>a</i> and <i>d</i> positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with β-strand propensity— the β-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4–6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"301 - 307"},"PeriodicalIF":0.9,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49672877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assignment of the disordered, proline-rich N-terminal domain of the tumour suppressor p53 protein using 1HN and 1Hα-detected NMR measurements 使用1HN和1Hα检测的NMR测量对肿瘤抑制p53蛋白的无序、富含脯氨酸的N-末端结构域的分配
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-10-20 DOI: 10.1007/s12104-023-10160-4
Fanni Sebák, Péter Ecsédi, László Nyitray, Andrea Bodor

Protein p53 is mostly known for playing a key role in tumour suppression, and mutations in the p53 gene are amongst the most frequent genomic events accompanying oncogenic transformation. Continuous research is conducted to target disordered proteins/protein regions for cancer therapy, for which atomic level information is also necessary. The disordered N-terminal part of p53 contains the transactivation and the proline-rich domains—which besides being abundant in proline residues—contains repetitive Pro-Ala motifs. NMR assignment of such repetitive, proline-rich regions is challenging due to the lack of amide protons in the 1HN-detected approaches, as well as due to the small chemical shift dispersion. In the present study we perform the full assignment of the p531–100 region by applying a combination of 1HN- and 1Hα-detected NMR experiments. We also show the increased information content when using real-time homo- and heteronuclear decoupled acquisition schemes. On the other hand, we highlight the presence of minor proline species, and using Pro-selective experiments we determine the corresponding cis or trans conformation. Secondary chemical shifts for (Cα–Cβ) atoms indicate the disordered nature of this region, with expected helical tendency for the TAD1 region. As the role of the proline-rich domain is yet not well understood our results can contribute to further successful investigations.

众所周知,p53蛋白在肿瘤抑制中起着关键作用,p53基因突变是伴随致癌转化而发生的最常见的基因组事件之一。针对癌症治疗的紊乱蛋白质/蛋白质区域进行了持续的研究,其中原子水平的信息也是必要的。p53的无序N端部分包含反式激活和富含脯氨酸的结构域,这些结构域除了富含脯氨酸残基外,还包含重复的Pro-Ala基序。由于在1HN检测的方法中缺乏酰胺质子,以及由于小的化学位移分散,这种重复的富含脯氨酸的区域的NMR分配是具有挑战性的。在本研究中,我们通过应用1HN-和1Hα-检测NMR实验的组合,对p531-100区域进行了完整的分配。我们还展示了当使用实时同核和异核解耦捕获方案时增加的信息内容。另一方面,我们强调了少量脯氨酸的存在,并使用亲选择性实验确定了相应的顺式或反式构象。(Cα–Cβ)原子的二次化学位移表明该区域的无序性质,TAD1区域具有预期的螺旋趋势。由于富含脯氨酸结构域的作用尚不清楚,我们的研究结果有助于进一步的成功研究。
{"title":"Assignment of the disordered, proline-rich N-terminal domain of the tumour suppressor p53 protein using 1HN and 1Hα-detected NMR measurements","authors":"Fanni Sebák,&nbsp;Péter Ecsédi,&nbsp;László Nyitray,&nbsp;Andrea Bodor","doi":"10.1007/s12104-023-10160-4","DOIUrl":"10.1007/s12104-023-10160-4","url":null,"abstract":"<div><p>Protein p53 is mostly known for playing a key role in tumour suppression, and mutations in the p53 gene are amongst the most frequent genomic events accompanying oncogenic transformation. Continuous research is conducted to target disordered proteins/protein regions for cancer therapy, for which atomic level information is also necessary. The disordered N-terminal part of p53 contains the transactivation and the proline-rich domains—which besides being abundant in proline residues—contains repetitive Pro-Ala motifs. NMR assignment of such repetitive, proline-rich regions is challenging due to the lack of amide protons in the <sup>1</sup>H<sup>N</sup>-detected approaches, as well as due to the small chemical shift dispersion. In the present study we perform the full assignment of the p53<sup>1–100</sup> region by applying a combination of <sup>1</sup>H<sup>N</sup>- and <sup>1</sup>H<sup>α</sup>-detected NMR experiments. We also show the increased information content when using real-time homo- and heteronuclear decoupled acquisition schemes. On the other hand, we highlight the presence of minor proline species, and using Pro-selective experiments we determine the corresponding <i>cis</i> or <i>trans</i> conformation. Secondary chemical shifts for (C<sup>α</sup>–C<sup>β</sup>) atoms indicate the disordered nature of this region, with expected helical tendency for the TAD1 region. As the role of the proline-rich domain is yet not well understood our results can contribute to further successful investigations.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"309 - 314"},"PeriodicalIF":0.9,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N, 13C resonance assignments for proteasome shuttle factor hHR23a 蛋白酶体穿梭因子hHR23a的1H,15N,13C共振分配
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-10-09 DOI: 10.1007/s12104-023-10157-z
Xiang Chen, Kylie J. Walters

hHR23a (human homolog of Rad23 a) functions in nucleotide excision repair and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like (UBL) domain, an xeroderma pigmentosum C (XPC)-binding domain, and a ubiquitin-associated (UBA) domain preceding and following the XPC-binding domain. Each of the four structural domains are connected by flexible linker regions. We report in this NMR study, the 1H, 15N and 13C resonance assignments for the backbone and sidechain atoms of the hHR23a full-length protein with BioMagResBank accession number 52059. Assignments are 97% and 87% for the backbone (NH, N, C′, Cα, and Hα) and sidechain atoms of the hHR23a structured regions. The secondary structural elements predicted from the NMR data fit well to the hHR23a NMR structure. The assignments described in this manuscript can be used to apply NMR for studies of hHR23a with its binding partners.

hHR23a(Rad23a的人类同源物)在核苷酸切除修复和蛋白酶体介导的蛋白质降解中发挥作用。它包含N-末端泛素样(UBL)结构域、着色性干皮病C(XPC)结合结构域和XPC结合结构域前后的泛素相关(UBA)结构域。四个结构域中的每一个都通过柔性连接区连接。我们在这项NMR研究中报道了hHR23a全长蛋白的主链和侧链原子的1H、15N和13C共振分配,BioMagResBank登录号为52059。hHR23a结构区的主链(NH、N、C′、Cα和Hα)和侧链原子的分配分别为97%和87%。根据NMR数据预测的二级结构元素与hHR23a NMR结构非常吻合。本手稿中描述的任务可用于应用NMR研究hHR23a及其结合伴侣。
{"title":"1H, 15N, 13C resonance assignments for proteasome shuttle factor hHR23a","authors":"Xiang Chen,&nbsp;Kylie J. Walters","doi":"10.1007/s12104-023-10157-z","DOIUrl":"10.1007/s12104-023-10157-z","url":null,"abstract":"<div><p>hHR23a (human homolog of Rad23 a) functions in nucleotide excision repair and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like (UBL) domain, an xeroderma pigmentosum C (XPC)-binding domain, and a ubiquitin-associated (UBA) domain preceding and following the XPC-binding domain. Each of the four structural domains are connected by flexible linker regions. We report in this NMR study, the <sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C resonance assignments for the backbone and sidechain atoms of the hHR23a full-length protein with BioMagResBank accession number 52059. Assignments are 97% and 87% for the backbone (<sup>N</sup>H, N, C′, Cα, and Hα) and sidechain atoms of the hHR23a structured regions. The secondary structural elements predicted from the NMR data fit well to the hHR23a NMR structure. The assignments described in this manuscript can be used to apply NMR for studies of hHR23a with its binding partners.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"287 - 291"},"PeriodicalIF":0.9,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift assignments of wildtype human leptin 野生型人类瘦素的化学位移分配。
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-10-05 DOI: 10.1007/s12104-023-10153-3
Xiao Fan, Ruiqi Qin, Wensu Yuan, Jing-Song Fan, Zhi Lin

Leptin is an adipose tissue-expressed 16-kDa hormone encoded by the ob/ob gene. It serves a crucial role in regulating diverse physiological processes, including body weight control, energy homeostasis regulation, promotion of cell proliferation, and more. Emerging research has also revealed potential implications of leptin in various aging-related diseases, suggesting multifaceted physiological roles of leptin. Structural investigation of wild-type leptin in apo form is of particular importance to understand its conformational plasticity for receptor interaction and recognition. Here, we report backbone and side-chain resonance assignments of wild-type human leptin as a basis for structural and functional studies on leptin-mediated signaling.

瘦素是一种脂肪组织,表达由ob/ob基因编码的16kDa激素。它在调节各种生理过程中发挥着至关重要的作用,包括体重控制、能量稳态调节、促进细胞增殖等。新兴的研究也揭示了瘦素在各种衰老相关疾病中的潜在作用,表明瘦素具有多方面的生理作用。野生型瘦素apo形式的结构研究对于了解其在受体相互作用和识别中的构象可塑性具有特别重要的意义。在这里,我们报道了野生型人类瘦素的主链和侧链共振分配,作为瘦素介导的信号传导的结构和功能研究的基础。
{"title":"Chemical shift assignments of wildtype human leptin","authors":"Xiao Fan,&nbsp;Ruiqi Qin,&nbsp;Wensu Yuan,&nbsp;Jing-Song Fan,&nbsp;Zhi Lin","doi":"10.1007/s12104-023-10153-3","DOIUrl":"10.1007/s12104-023-10153-3","url":null,"abstract":"<div><p>Leptin is an adipose tissue-expressed 16-kDa hormone encoded by the ob/ob gene. It serves a crucial role in regulating diverse physiological processes, including body weight control, energy homeostasis regulation, promotion of cell proliferation, and more. Emerging research has also revealed potential implications of leptin in various aging-related diseases, suggesting multifaceted physiological roles of leptin. Structural investigation of wild-type leptin in apo form is of particular importance to understand its conformational plasticity for receptor interaction and recognition. Here, we report backbone and side-chain resonance assignments of wild-type human leptin as a basis for structural and functional studies on leptin-mediated signaling.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"265 - 268"},"PeriodicalIF":0.9,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41095982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution-state NMR assignment and secondary structure analysis of the monomeric Pseudomonas biofilm-forming functional amyloid accessory protein FapA 单体假单胞菌生物膜形成功能性淀粉样蛋白辅助蛋白FapA的溶液态NMR定位和二级结构分析。
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-10-05 DOI: 10.1007/s12104-023-10155-1
Chang-Hyeock Byeon, Ümit Akbey

FapA is an accessory protein within the biofilm forming functional bacterial amyloid related fap-operon in Pseudomonas, and maybe a chaperone for FapC controlling its fibrillization. To allow further structural analysis, here we present a complete sequential assignment of 1Hamide, 13Cα, 13Cβ, and 15N NMR resonances for the functional form of the monomeric soluble FapA protein, comprising amino acids between 29 and 152. From these observed chemical shifts, the secondary structure propensities (SSPs) were determined. FapA predominantly adopts a random coil conformation, however, we also identified small propensities for α-helical and β-strand conformations. Notably, these observed SSPs are smaller compared to the ones we recently observed for the monomeric soluble FapC protein. These NMR results provide valuable insights into the activity of FapA in functional amyloid formation and regulation, that will also aid developing strategies targeting amyloid formation within biofilms and addressing chronic infections.

FapA是假单胞菌中形成生物膜的功能性细菌淀粉样蛋白相关fap操纵子中的一种辅助蛋白,可能是FapC控制其原纤维化的伴侣。为了进行进一步的结构分析,我们提出了单体可溶性FapA蛋白功能形式的1H酰胺、13Cα、13Cβ和15N NMR共振的完整序列分配,该蛋白包含29至152个氨基酸。根据这些观察到的化学位移,确定了二级结构倾向(SSP)。FapA主要采用无规螺旋构象,然而,我们也发现了α-螺旋和β-链构象的小倾向。值得注意的是,与我们最近观察到的单体可溶性FapC蛋白相比,这些观察到的SSP更小。这些NMR结果为FapA在功能性淀粉样蛋白形成和调节中的活性提供了有价值的见解,这也将有助于开发针对生物膜内淀粉样蛋白的形成和解决慢性感染的策略。
{"title":"Solution-state NMR assignment and secondary structure analysis of the monomeric Pseudomonas biofilm-forming functional amyloid accessory protein FapA","authors":"Chang-Hyeock Byeon,&nbsp;Ümit Akbey","doi":"10.1007/s12104-023-10155-1","DOIUrl":"10.1007/s12104-023-10155-1","url":null,"abstract":"<div><p>FapA is an accessory protein within the biofilm forming functional bacterial amyloid related fap-operon in <i>Pseudomonas</i>, and maybe a chaperone for FapC controlling its fibrillization. To allow further structural analysis, here we present a complete sequential assignment of <sup>1</sup>H<sub>amide</sub>, <sup>13</sup>C<sub>α</sub>, <sup>13</sup>C<sub>β</sub>, and <sup>15</sup>N NMR resonances for the functional form of the monomeric soluble FapA protein, comprising amino acids between 29 and 152. From these observed chemical shifts, the secondary structure propensities (SSPs) were determined. FapA predominantly adopts a random coil conformation, however, we also identified small propensities for α-helical and β-strand conformations. Notably, these observed SSPs are smaller compared to the ones we recently observed for the monomeric soluble FapC protein. These NMR results provide valuable insights into the activity of FapA in functional amyloid formation and regulation, that will also aid developing strategies targeting amyloid formation within biofilms and addressing chronic infections.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"275 - 280"},"PeriodicalIF":0.9,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41094752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Biomolecular NMR Assignments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1