Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications.
{"title":"Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications.","authors":"Abhishek Ramachandra Panigrahi, Abhinandana Sahu, Pooja Yadav, Samir Kumar Beura, Jyoti Singh, Krishnakanta Mondal, Sunil Kumar Singh","doi":"10.1016/bs.apcsb.2023.11.015","DOIUrl":null,"url":null,"abstract":"<p><p>In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface. Arguably, the most significant barrier is the complexity that arises by interplay of several factors like properties of nanomaterial (shape, size, surface chemistry), its interaction with suspending media (surface hydration and dehydration, surface reconstruction and release of free surface energy) and the interaction with biomolecules (conformational change in biomolecules, interaction with membrane and receptor). Tailoring a nanomaterial that minimally interacts with protein and lipids in the medium while effectively acts on target site in biological milieu has been very difficult. Computational methods and artificial intelligence techniques have displayed potential in effectively addressing this problem. Through predictive modelling and deep learning, computer-based methods have demonstrated the capability to create accurate models of interactions between nanoparticles and cell membranes, as well as the uptake of nanomaterials by cells. Computer-based simulations techniques enable these computational models to forecast how making particular alterations to a material's physical and chemical properties could enhance functional aspects, such as the retention of drugs, the process of cellular uptake and biocompatibility. We review the most recent progress regarding the bio-nano interface studies between the plasma proteins and CBNs with a special focus on computational simulations based on molecular dynamics and density functional theory.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"263-288"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.11.015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface. Arguably, the most significant barrier is the complexity that arises by interplay of several factors like properties of nanomaterial (shape, size, surface chemistry), its interaction with suspending media (surface hydration and dehydration, surface reconstruction and release of free surface energy) and the interaction with biomolecules (conformational change in biomolecules, interaction with membrane and receptor). Tailoring a nanomaterial that minimally interacts with protein and lipids in the medium while effectively acts on target site in biological milieu has been very difficult. Computational methods and artificial intelligence techniques have displayed potential in effectively addressing this problem. Through predictive modelling and deep learning, computer-based methods have demonstrated the capability to create accurate models of interactions between nanoparticles and cell membranes, as well as the uptake of nanomaterials by cells. Computer-based simulations techniques enable these computational models to forecast how making particular alterations to a material's physical and chemical properties could enhance functional aspects, such as the retention of drugs, the process of cellular uptake and biocompatibility. We review the most recent progress regarding the bio-nano interface studies between the plasma proteins and CBNs with a special focus on computational simulations based on molecular dynamics and density functional theory.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.