Detecting DNA hydroxymethylation: exploring its role in genome regulation.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY BMB Reports Pub Date : 2024-03-01
Sun-Min Lee
{"title":"Detecting DNA hydroxymethylation: exploring its role in genome regulation.","authors":"Sun-Min Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"135-142"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测 DNA 羟甲基化:探索其在基因组调控中的作用。
DNA 甲基化是研究最广泛的表观遗传调控机制之一,在各种生物体中发挥着至关重要的作用。它与基因表达和染色质变化的调控有关,包括细胞状态转变过程中的整体改变和基因座特异性修饰。5-hydroxymethylcytosine (5hmC) 是由 5-甲基胞嘧啶 (5mC) 在十-十一易位 (TET) 酶的催化下通过主要氧化作用产生的,它在基因组调控中的重要作用正逐渐被人们所认识。随着最先进实验技术的发展,以碱基分辨率检测和区分 5mC 和 5hmC 已成为可能。各种技术不断发展,包括化学和酶法以及第三代测序技术。这些进步为深入探讨 5hmC 在从胚胎干细胞(ESC)到各种分化细胞等各种细胞类型中的作用铺平了道路。本综述旨在全面报告最新技术并讨论 5hmC 的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMB Reports
BMB Reports 生物-生化与分子生物学
CiteScore
5.10
自引率
7.90%
发文量
141
审稿时长
1 months
期刊介绍: The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.
期刊最新文献
Celecoxib is the only nonsteroidal anti-inflammatory drug to inhibit bone progression in spondyloarthritis. Dynamics of Nucleosomes and Chromatin Fibers Revealed by Single-Molecule Measurements. GPR40-full agonist AM1638 alleviates palmitate-induced oxidative damage in H9c2 cells via an AMPK-dependent pathway. Neutrophils in MASLD and MASH. Quantum molecular resonance ameliorates atopic dermatitis through suppression of IL36G and SPRR2B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1