Effects of vehicles on the physical properties and biocompatibility of premixed calcium silicate cements.

IF 1.9 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Dental materials journal Pub Date : 2024-03-29 Epub Date: 2024-03-05 DOI:10.4012/dmj.2023-147
Gitae Son, Gyeung Mi Seon, Sang Hoon Choi, Hyeong-Cheol Yang
{"title":"Effects of vehicles on the physical properties and biocompatibility of premixed calcium silicate cements.","authors":"Gitae Son, Gyeung Mi Seon, Sang Hoon Choi, Hyeong-Cheol Yang","doi":"10.4012/dmj.2023-147","DOIUrl":null,"url":null,"abstract":"<p><p>Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
载体对预混合硅酸钙水泥的物理性质和生物相容性的影响。
预混合硅酸钙水泥(pCSCs)中含有赋予 CSCs 流动性和粘度的载体。本研究旨在探讨聚乙二醇(PEG)、丙二醇(PG)和二甲基亚砜(DMSO)这三种载体对预混合硅酸钙水泥的理化性质和生物相容性的影响。评估了 pCSCs 的凝固时间、溶解度、膨胀率和机械强度,并评估了磷酸盐缓冲盐水(PBS)中磷酸钙沉淀的形成。研究了 pCSC 提取物对间充质干细胞(MSCs)成骨分化的影响。最后,观察了 pCSCs 在大鼠股骨中的组织相容性。含有 PEG 的 CSC(CSC-PEG)表现出更高的溶解度和凝固时间,CSC-DMSO 表现出最高的膨胀率和机械强度。所有 pCSCs 都会产生磷酸钙沉淀。CSC-PEG 提取物诱导的成骨标志物表达量最高,钙沉淀也最多。当植入大鼠股骨时,CSC-PEG 被大量吸收,而 CSC-PG 在股骨内保持相对不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dental materials journal
Dental materials journal 医学-材料科学:生物材料
CiteScore
4.60
自引率
4.00%
发文量
102
审稿时长
3 months
期刊介绍: Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.
期刊最新文献
Corrosion behavior of Zr-14Nb-5Ta-1Mo alloy in simulated body fluid. Wear characteristics of resin-based luting agents used in the bonded CAD-CAM resin blocks. Chemical and physical properties of radiopaque Portland cement formulation with reduced particle size. Five-year clinical follow-up of bulk-fill restorative materials in class II restorations. Automatic point detection on cephalograms using convolutional neural networks: A two-step method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1