Biomedical Applications of Green Synthesized Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Using Aqueous Extract of Ziziphus Oxyphylla Leaves
{"title":"Biomedical Applications of Green Synthesized Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Using Aqueous Extract of Ziziphus Oxyphylla Leaves","authors":"Suliman Syed;Arshad Islam;Muhammad Shabeer;Akhtar Nadhman;Farhan Ahmad;Nadia Irfan;Shaila Mehwish;Ajmal Khan","doi":"10.1109/TNB.2024.3373777","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) were synthesized using Ziziphus oxyphylla ’s aqueous leaf extract as reducing agent. UV-Vis absorption peaks at 324 nm and 335 nm were indicative of ZnO and Mg-doped ZnO, respectively. FTIR absorption bands observed at 3238, 1043, 1400, 1401, 2186 and 2320 cm\n<inline-formula> <tex-math>$^{-1}$ </tex-math></inline-formula>\n suggested the presence of phenols, alcohols, saturated hydrocarbons, and possibly alkynes. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy revealed pure, spherical and agglomerated NPs with average size of 35.9 nm (ZnO) and 56.8 nm (Mg-doped ZnO). Both NPs remained active against all bacterial strains with the highest inhibition zones observed against Proteus vulgaris (21.16±1.25 mm for ZnO and 24.1±0.76 mm for Mg-doped ZnO. EtBr fluorescence (cartwheel assay) indicated efflux pump blockage, suggesting its facilitation in the bacterial growth inhibition. Antioxidant potential, determined via DPPH radical scavenging assay, revealed stronger antioxidant potential for Mg-doped ZnO (IC\n<inline-formula> <tex-math>$_{{50}}~21.53\\pm 0.76~\\mu \\text{g}$ </tex-math></inline-formula>\n/mL) than pure ZnO (IC\n<inline-formula> <tex-math>$_{{50}}~30.32\\pm 0.73~\\mu \\text{g}$ </tex-math></inline-formula>\n/mL). Furthermore, both NPs showed antileishmanial activity against Leishmania tropica promastigotes (IC\n<inline-formula> <tex-math>$_{{50}}~47.23\\pm 3.22~\\mu \\text{g}$ </tex-math></inline-formula>\n/mL for Mg-doped ZnO and 64.34±6.56 for ZnO), while neither NP exhibited significant hemolysis, indicating biocompatibility and further assessment for their drugability.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"418-427"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10462088/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) were synthesized using Ziziphus oxyphylla ’s aqueous leaf extract as reducing agent. UV-Vis absorption peaks at 324 nm and 335 nm were indicative of ZnO and Mg-doped ZnO, respectively. FTIR absorption bands observed at 3238, 1043, 1400, 1401, 2186 and 2320 cm
$^{-1}$
suggested the presence of phenols, alcohols, saturated hydrocarbons, and possibly alkynes. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy revealed pure, spherical and agglomerated NPs with average size of 35.9 nm (ZnO) and 56.8 nm (Mg-doped ZnO). Both NPs remained active against all bacterial strains with the highest inhibition zones observed against Proteus vulgaris (21.16±1.25 mm for ZnO and 24.1±0.76 mm for Mg-doped ZnO. EtBr fluorescence (cartwheel assay) indicated efflux pump blockage, suggesting its facilitation in the bacterial growth inhibition. Antioxidant potential, determined via DPPH radical scavenging assay, revealed stronger antioxidant potential for Mg-doped ZnO (IC
$_{{50}}~21.53\pm 0.76~\mu \text{g}$
/mL) than pure ZnO (IC
$_{{50}}~30.32\pm 0.73~\mu \text{g}$
/mL). Furthermore, both NPs showed antileishmanial activity against Leishmania tropica promastigotes (IC
$_{{50}}~47.23\pm 3.22~\mu \text{g}$
/mL for Mg-doped ZnO and 64.34±6.56 for ZnO), while neither NP exhibited significant hemolysis, indicating biocompatibility and further assessment for their drugability.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).