首页 > 最新文献

IEEE Transactions on NanoBioscience最新文献

英文 中文
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. 基于电纺氧化锡纳米纤维薄膜的传感设备,用于监测粘附的哺乳动物细胞的功能行为。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-04 DOI: 10.1109/TNB.2024.3489353
Uvanesh Kasiviswanathan, Chandan Kumar, Ajay Kumar Sahi, Amit Kumar, Satyabrata Jit, Neeraj Sharma, Sanjeev Kumar Mahto

This study presents a biosensor utilizing electrospun SnO2 nanofiber films for real-time monitoring of C2C12 cells. The biosensor demonstrates sensitivity towards cellular behaviours, including adhesion, proliferation, and detachment. Alterations in semi-circle and dielectric properties are validated through Nyquist plot and an EEC model, highlighting the biosensor's potential for analyzing cellular dynamics.

本研究介绍了一种利用电纺 SnO2 纳米纤维薄膜实时监测 C2C12 细胞的生物传感器。该生物传感器对细胞行为(包括粘附、增殖和脱落)十分敏感。通过奈奎斯特图和 EEC 模型验证了半圆和介电特性的变化,突出了生物传感器分析细胞动态的潜力。
{"title":"Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells.","authors":"Uvanesh Kasiviswanathan, Chandan Kumar, Ajay Kumar Sahi, Amit Kumar, Satyabrata Jit, Neeraj Sharma, Sanjeev Kumar Mahto","doi":"10.1109/TNB.2024.3489353","DOIUrl":"https://doi.org/10.1109/TNB.2024.3489353","url":null,"abstract":"<p><p>This study presents a biosensor utilizing electrospun SnO<sub>2</sub> nanofiber films for real-time monitoring of C2C12 cells. The biosensor demonstrates sensitivity towards cellular behaviours, including adhesion, proliferation, and detachment. Alterations in semi-circle and dielectric properties are validated through Nyquist plot and an EEC model, highlighting the biosensor's potential for analyzing cellular dynamics.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Galaxy" encoding: toward high storage density and low cost. "银河 "编码:实现高存储密度和低成本。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-28 DOI: 10.1109/TNB.2024.3481504
Xuncai Zhang, Yunfei Lu

DNA is considered one of the most attractive storage media because of its excellent reliability and durability. Early encoding schemes lacked flexibility and scalability. To address these limitations, we propose a combination of static mapping and dynamic encoding, named "Galaxy" encoding. This scheme uses both the "dual-rule interleaving" algorithm and the "twelve-element Huffman rotational encoding" algorithm. We tested it with "Shakespeare Sonnets" and other files, achieving an encoding information density of approximately 2.563 bits/nt. Additionally, the inclusion of Reed-Solomon error-correcting codes can correct nearly 5% of the errors. Our simulations show that it supports various file types (.gz, .tar, .exe, etc.). We also analyzed the cost and fault tolerance of "Galaxy" encoding, demonstrating its high coding efficiency and ability to fully recover original information while effectively reducing the costs of DNA synthesis and sequencing.

DNA 因其出色的可靠性和耐用性而被认为是最具吸引力的存储介质之一。早期的编码方案缺乏灵活性和可扩展性。为了解决这些局限性,我们提出了一种静态映射和动态编码相结合的方案,命名为 "银河 "编码。该方案同时使用了 "双规则交错 "算法和 "十二元素哈夫曼旋转编码 "算法。我们用 "莎士比亚十四行诗 "和其他文件对其进行了测试,编码信息密度约为 2.563 bits/nt。此外,加入里德-所罗门纠错码可纠正近 5%的错误。我们的模拟显示,它支持各种文件类型(.gz、.tar、.exe 等)。我们还分析了 "银河 "编码的成本和容错性,证明其编码效率高,能够完全恢复原始信息,同时有效降低 DNA 合成和测序的成本。
{"title":"\"Galaxy\" encoding: toward high storage density and low cost.","authors":"Xuncai Zhang, Yunfei Lu","doi":"10.1109/TNB.2024.3481504","DOIUrl":"https://doi.org/10.1109/TNB.2024.3481504","url":null,"abstract":"<p><p>DNA is considered one of the most attractive storage media because of its excellent reliability and durability. Early encoding schemes lacked flexibility and scalability. To address these limitations, we propose a combination of static mapping and dynamic encoding, named \"Galaxy\" encoding. This scheme uses both the \"dual-rule interleaving\" algorithm and the \"twelve-element Huffman rotational encoding\" algorithm. We tested it with \"Shakespeare Sonnets\" and other files, achieving an encoding information density of approximately 2.563 bits/nt. Additionally, the inclusion of Reed-Solomon error-correcting codes can correct nearly 5% of the errors. Our simulations show that it supports various file types (.gz, .tar, .exe, etc.). We also analyzed the cost and fault tolerance of \"Galaxy\" encoding, demonstrating its high coding efficiency and ability to fully recover original information while effectively reducing the costs of DNA synthesis and sequencing.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Transactions on NanoBioscience Vol. 23 2024 Index IEEE Transactions on NanoBioscience Vol.
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-23 DOI: 10.1109/TNB.2024.3483609
{"title":"2024 Index IEEE Transactions on NanoBioscience Vol. 23","authors":"","doi":"10.1109/TNB.2024.3483609","DOIUrl":"https://doi.org/10.1109/TNB.2024.3483609","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"1-14"},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on NanoBioscience Publication Information 电气和电子工程师学会《纳米生物科学论文集》出版信息
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3460099
{"title":"IEEE Transactions on NanoBioscience Publication Information","authors":"","doi":"10.1109/TNB.2024.3460099","DOIUrl":"https://doi.org/10.1109/TNB.2024.3460099","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"C2-C2"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Special Section on Biomedical and Health Informatics 生物医学与健康信息学》特邀编辑专栏
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3460448
Xiaohua Hu
{"title":"Guest Editorial Special Section on Biomedical and Health Informatics","authors":"Xiaohua Hu","doi":"10.1109/TNB.2024.3460448","DOIUrl":"https://doi.org/10.1109/TNB.2024.3460448","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"538-539"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Errata to “Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes” 利用 3D 打印磁盘电极在微生物燃料电池中利用多种废水电解质发电的基准测试 "勘误表
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3443498
Yuvraj Maphrio Mao;Khairunnisa Amreen;Sanket Goel
Presents corrections to the paper, Benchmarking Power Generation From 2 Multiple Wastewater Electrolytes in Microbial 3 Fuel Cells With 3D Printed Disk-Electrodes.
对论文 "利用 3D 打印磁盘电极的微生物 3 燃料电池中 2 多种废水电解质的发电基准 "进行更正。
{"title":"Errata to “Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes”","authors":"Yuvraj Maphrio Mao;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/TNB.2024.3443498","DOIUrl":"https://doi.org/10.1109/TNB.2024.3443498","url":null,"abstract":"Presents corrections to the paper, Benchmarking Power Generation From 2 Multiple Wastewater Electrolytes in Microbial 3 Fuel Cells With 3D Printed Disk-Electrodes.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"612-613"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on NanoBioscience Information for Authors 电气和电子工程师学会《纳米生物科学学报》为作者提供的信息
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3460103
{"title":"IEEE Transactions on NanoBioscience Information for Authors","authors":"","doi":"10.1109/TNB.2024.3460103","DOIUrl":"https://doi.org/10.1109/TNB.2024.3460103","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"C3-C3"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FePt/MnO2@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy. 作为多功能放射增敏剂的FePt/MnO2@PEG纳米颗粒可在骨肉瘤治疗中增强铁素体生成和缓解缺氧。
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-11 DOI: 10.1109/TNB.2024.3475051
Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou

Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO2@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO2@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.

放疗(RT)是一种广泛应用的癌症治疗方法,而使用金属基纳米放疗增敏剂则有望提高其疗效。然而,实现这些增敏剂在肿瘤内的有效积累以及克服缺氧肿瘤微环境诱导的抗药性仍然是具有挑战性的问题。在这项研究中,我们开发了具有多种放射增敏机制的FePt/MnO2@PEG纳米粒子,包括高原子序数元素介导的辐射捕获、催化酶模拟氧合和GSH耗竭诱导的铁跃迁。通过体外和体内实验验证了 FePt/MnO2@PEG 的放射增敏机制和疗效。总之,本研究提出了一种新颖且与临床相关的策略,并建立了一种安全有效的癌症联合放疗方法。这些发现为改善放疗效果和推进纳米医学在癌症治疗领域的应用提供了巨大的潜力。
{"title":"FePt/MnO<sub>2</sub>@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy.","authors":"Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou","doi":"10.1109/TNB.2024.3475051","DOIUrl":"10.1109/TNB.2024.3475051","url":null,"abstract":"<p><p>Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO<sub>2</sub>@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO<sub>2</sub>@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of nanocarrier additives on biomechanical response of a rat skin. 纳米载体添加剂对大鼠皮肤生物力学反应的影响
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-04 DOI: 10.1109/TNB.2024.3471588
Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi

Skin health monitoring focuses on identifying diseases through the assessment of the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the form of the modes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029% respectively compared to normal skin (frequency: 263.3 ± 1.18 Hz and Modulus of elasticity: 7.56 ± 2.60 MPa). A decrease in stiffness (function of frequency) attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.

皮肤健康监测的重点是通过评估皮肤的机械特性来识别疾病。这些特性可能会随着时间的推移而退化,从而改变皮肤的自然频率以及与这些频率相关的模态形式。探索皮肤的机械特性可以增强我们对皮肤动态的了解,从而改进临床试验和诊断。在这项工作中,我们使用基于激光的非侵入式光学传感器实验测量了皮肤的动态特性。我们通过分析皮肤的共振频率和模态形状,测量了皮肤随时间变化的机械特性。我们局部涂抹了纳米载体凝胶和酮康唑乳膏,以保持皮肤水分,促进添加剂在皮肤中的深层渗透。基于时间的研究用于评估不同配方对皮肤弹性的影响。弹性模量的实验结果与有限元分析(FEA)模拟得出的结果进行了比较。我们观察到,与正常皮肤相比,膏霜和凝胶处理皮肤的频率分别降低了 29.98% 和 44.029%(频率:263.3 ± 1.18 Hz,弹性模量:7.56 ± 2.60 MPa)。与正常皮肤相比,经过乳霜和纳米载体凝胶处理的皮肤刚度(频率函数)下降,这归因于含水量的增加。实验结果和数值结果是一致的。这种基于光学传感器的方法可用于研究病变皮肤力学及其对凝胶和乳霜治疗的反应,从而降低皮肤病的发病率和严重程度。
{"title":"Influence of nanocarrier additives on biomechanical response of a rat skin.","authors":"Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi","doi":"10.1109/TNB.2024.3471588","DOIUrl":"10.1109/TNB.2024.3471588","url":null,"abstract":"<p><p>Skin health monitoring focuses on identifying diseases through the assessment of the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the form of the modes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029% respectively compared to normal skin (frequency: 263.3 ± 1.18 Hz and Modulus of elasticity: 7.56 ± 2.60 MPa). A decrease in stiffness (function of frequency) attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Gold Nanoparticles Intraperitoneal Injection on Mice's Erythrocytes and Renal Tissue. 金纳米粒子腹腔注射对小鼠红细胞和肾组织的影响
IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-03 DOI: 10.1109/TNB.2024.3471813
Hassan A Almarshad, Abozer Elderdery, Fawaz O Alenazy, Shawgi A Elissidig

The purpose of this study was to investigate the effects of two different types of gold nanoparticles (AuNPs) delivered by intraperitoneal (IP) injection on blood and kidney tissue changes in a mouse model. Three groups of fifteen adult male BALB/c healthy mice, weighing approximately 25-30 g, were used for the experiment and designated G1, G2, and G3, respectively. G1 mice received vehicle, whereas G2 and G3 received an IP injection of 10 mg/kg body weight of methoxy poly ethylene glycol gold nanoparticles (PEG-AuNPs) and fluorescently dye labeled gold nanoparticles (Dye-AuNPs), respectively. Hematological parameters were measured based on the standard complete blood cell count (CBC) technique. The two nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, significantly reduced most red blood cell (RBC) parameters in the groups with the exception of a nonsignificant effect on hemoglobin (HBG) levels. Both gold nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, led to a reduced RBC count, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) level when compared with the control. Notably, Dye-AuNPs and PEG-AuNPs resulted in a considerably higher RBC distribution RDW-(CV % and SD fL). Glomerular injury was suggested based on the development of hydropic degeneration and the presence of a protein-rich fluid inside the tubules. Renal tissue and blood indices changed significantly in response to the two nanoparticles, suggesting possible organ injury.

本研究旨在探讨通过腹腔注射(IP)给药的两种不同类型的金纳米粒子(AuNPs)对小鼠模型的血液和肾脏组织变化的影响。实验使用了三组 15 只成年雄性 BALB/c 健康小鼠(体重约 25-30 克),分别命名为 G1、G2 和 G3。G1 小鼠接受药物治疗,而 G2 和 G3 则分别接受 10 mg/kg 体重的甲氧基聚乙二醇金纳米颗粒(PEG-AuNPs)和荧光染料标记金纳米颗粒(Dye-AuNPs)的 IP 注射。血液学参数根据标准全血细胞计数(CBC)技术进行测量。除对血红蛋白(HBG)水平无显著影响外,PEG-AuNPs 和 Dye-AuNPs 这两种纳米粒子能显著降低各组的大多数红细胞(RBC)参数。与对照组相比,PEG-AuNPs 和 Dye-AuNPs 这两种金纳米粒子都会导致红细胞计数、平均血球容积 (MCV) 和平均血红蛋白 (MCH) 水平降低。值得注意的是,Dye-AuNPs 和 PEG-AuNPs 导致 RBC 分布 RDW-(CV % 和 SD fL)显著升高。肾小球损伤是基于肾小管内出现水肿变性和富含蛋白质的液体。肾组织和血液指数在两种纳米颗粒的作用下发生了显著变化,表明可能存在器官损伤。
{"title":"Impact of Gold Nanoparticles Intraperitoneal Injection on Mice's Erythrocytes and Renal Tissue.","authors":"Hassan A Almarshad, Abozer Elderdery, Fawaz O Alenazy, Shawgi A Elissidig","doi":"10.1109/TNB.2024.3471813","DOIUrl":"https://doi.org/10.1109/TNB.2024.3471813","url":null,"abstract":"<p><p>The purpose of this study was to investigate the effects of two different types of gold nanoparticles (AuNPs) delivered by intraperitoneal (IP) injection on blood and kidney tissue changes in a mouse model. Three groups of fifteen adult male BALB/c healthy mice, weighing approximately 25-30 g, were used for the experiment and designated G1, G2, and G3, respectively. G1 mice received vehicle, whereas G2 and G3 received an IP injection of 10 mg/kg body weight of methoxy poly ethylene glycol gold nanoparticles (PEG-AuNPs) and fluorescently dye labeled gold nanoparticles (Dye-AuNPs), respectively. Hematological parameters were measured based on the standard complete blood cell count (CBC) technique. The two nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, significantly reduced most red blood cell (RBC) parameters in the groups with the exception of a nonsignificant effect on hemoglobin (HBG) levels. Both gold nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, led to a reduced RBC count, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) level when compared with the control. Notably, Dye-AuNPs and PEG-AuNPs resulted in a considerably higher RBC distribution RDW-(CV % and SD fL). Glomerular injury was suggested based on the development of hydropic degeneration and the presence of a protein-rich fluid inside the tubules. Renal tissue and blood indices changed significantly in response to the two nanoparticles, suggesting possible organ injury.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on NanoBioscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1